K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2020

Tìm Min nhầm :((

21 tháng 10 2020

À Tìm Max đúng r :))

AH
Akai Haruma
Giáo viên
22 tháng 10 2020

Lời giải:

Đặt $xy=a; x+y=b$ thì ta có: \(\left\{\begin{matrix} b^2-2a=4\\ b^2\geq 4a\end{matrix}\right.\)

$A=\frac{xy}{x+y+2}=\frac{a}{b+2}=\frac{b^2-4}{2(b+2)}=\frac{b-2}{2}$
Từ $b^2\geq 4a$. Thay $4a=2(b^2-4)$ có:

$b^2\geq 2(b^2-4)$

$\Leftrightarrow b^2\leq 8\Rightarrow b\leq 2\sqrt{2}$

Do đó: $A=\frac{b-2}{2}\leq \frac{2\sqrt{2}-2}{2}=\sqrt{2}-1$

Vậy $A_{\max}=\sqrt{2}-1$

21 tháng 10 2020

\(A=\frac{xy}{x+y+2}\)

1 tháng 3 2021

`0<=y,z<=1`

`=>1-y,1-z>=0`

`=>(1-y)(1-z)>=0`

`=>1-y-z+yz>=0`

`=>yz>=y+z-1`

`=>2yz>=2x+2z-2`

`=>P=x^2+y^2+z^2`

`=>P=x^2+(y^2+2yz+z^2)-2yz`

`=>P=x^2+(y+z)^2-2yz`

`=>P<=x^2-2(y+z-1)+(3/2-x)^2`

`=>P<=(3/2-x)^2-2(1/2-x)+x^2`

`=>P<=9/4-3x+x^2-1+2x+x^2`

`=>P<=5/4+2x^2-x`

Giả sử:

`x<=y<=z`

`=>x+x+x<=x+y+z=3/2`

`=>3x<=3/2`

`=>x<=1/2`

`0<=x<=1/2=>2x^2-x<=0`

`=>P<=5/4`

Dấu "=" xảy ra khi `(x,y,z)=(0,1,1/2)` và các hoán vị

Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x,y,z\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2+x^2+y^2+z^2\ge x^2+y^2+z^2+2xy+2yz+2xz\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)\ge\dfrac{9}{4}:3=\dfrac{9}{4}\cdot\dfrac{1}{3}=\dfrac{3}{4}\)

Dấu '=' xảy ra khi \(x=y=z=\dfrac{1}{4}\)

Vậy: \(P_{max}=\dfrac{3}{4}\) khi \(x=y=z=\dfrac{1}{4}\)

23 tháng 1 2021

\(\left|xy\right|+\left|yz\right|+\left|zx\right|\)

2 tháng 7 2017

1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2

= 4/9 .y.y.y . (3/2-3/2.y)^2

=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)

<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5

=4/9 . 243/3125

=108/3125

Đến đó tự giải

2 tháng 7 2017


Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1 
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2) 
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
 Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv 
 

30 tháng 7 2020

Ta có: \(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

\(\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}\)

\(=\frac{6}{\left(x+y\right)^2}=6\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

30 tháng 7 2020

Bài làm:

Ta có: \(x+y\ge2\sqrt{xy}\)(bất đẳng thức Cauchy)

\(\Leftrightarrow\sqrt{xy}\le\frac{x+y}{2}\)

\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

Áp dụng bất đẳng thức Cauchy Schwars ta được:

\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)

\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+\frac{1}{2.\frac{1}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{1}{2}}\)

\(=\frac{4}{1^2}+2=6\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)