K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0

a:

góc BAE=góc BAC+góc CAE=góc BAC+60 độ

góc CAD=góc CAB+góc BAD=góc BAC+60 độ

=>góc BAE=góc CAD

Xét ΔABE và ΔADC có

AB=AD

góc BAE=góc DAC

AE=AC

=>ΔABE=ΔADC

b: ΔABE=ΔADC

=>góc ABE=góc ADC

=>góc ABM=góc ADM

Xét tứ giác ADBM có

góc ABM=góc ADM

=>ADBM là tứ giác nội tiếp

=>góc DMB=góc DAB=60 độ

góc DMB+góc BMC=180 độ(kề bù)

=>góc BMC=180-60=120 độ

28 tháng 6 2017

14 tháng 4 2021

4 tháng 9 2019

Bn tự vẽ hình nha

a)Ta có:\(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}\)

\(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}\)

\(\widehat{DAB}=\widehat{CAE}\left(=60^o\right)\)

\(\Rightarrow\widehat{DAC}=\widehat{BAE}\)

Xét\(\Delta ABE\)\(\Delta ADC\) có:AB=AD(\(\Delta ABD\)đều)

\(\widehat{BAE}=\widehat{DAC}\left(cmt\right)\)

AE=AC(\(\Delta ACE\)đều)

Do đó:\(\Delta ABE=\Delta ADC\left(c-g-c\right)\)

4 tháng 9 2019

Sau 1 hồi mò mẫm thì mik ra đc cái hình này hơi sấu thông cảm

AECBDM

9 tháng 1 2021
thích các bước giải: a, Xét tam giác ABE và tam giác ADC có: AB = AD góc BAE = góc DAC AE=AC ==> tam giacs ABE = tam giác ADC ( c.g.c )
30 tháng 7 2017

Chủ thớt chuẩn bị dĩa với dụng cụ đi :v 

a) Xét \(\Delta ABD\) đều 

=> \(\widehat{DAB}=\widehat{ABD}=\widehat{BDA}=60^0\)

Xét \(\Delta ACE\)

=> \(\widehat{CAE}=\widehat{ECA}=\widehat{AEC}=60^0\)

Có : \(\widehat{BAC}+\widehat{DAB}=\widehat{BAC}+\widehat{CAE}\) \(\left(\widehat{CAE}=\widehat{DAB}=60^0\right)\)

\(\Rightarrow\widehat{DAC}=\widehat{EAB}\)

Xét \(\Delta ACD\) và \(\Delta AEB\) có :

\(\widehat{DAC}=\widehat{EAB}\)

\(AC=AE\) (\(\Delta ACE\) đều)

\(AB=AD\) (\(\Delta ABD\) đều)

=> \(\Delta ACD\)\(\Delta AEB\) (cạnh - góc - cạnh)

b) Gọi giao điểm của AC và BE là W  (chỗ này thì thích gì gọi đó :)) 
Ta có :

\(\Delta ACD\) = \(\Delta AEB\)

=> \(\widehat{AEB}=\widehat{ACD}\)

Lại có : \(\widehat{AWE}=\widehat{MWC}\)

Theo tổng 3 góc trong tam giác có :

\(\widehat{EAW}+\widehat{AEW}+\widehat{AWE\:}=60^0+\widehat{AEW}+\widehat{AWE}\) (tam giác AEW)

\(\widehat{CMW}+\widehat{MCW}+\widehat{MWC\: }=60^0+\widehat{MCW}+\widehat{MWC}\) (tam giác MWC)

=> 

30 tháng 7 2017

Làm tiếp :

=> \(\widehat{EAW}=\widehat{CMW}=60^0\)

Mà \(\widehat{CMW}+\widehat{CMB}=180^0\)

=> \(\widehat{CMB}=120^0\)