tìm x và y biết
x phần 2 bằng y phần 5 và x trừ 2 bằng y trừ 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\Rightarrow\frac{xy-4}{4y}=\frac{1}{2}\)
\(\Rightarrow2\left(xy-4\right)=4y\)
\(\Rightarrow2xy-8=4y\Rightarrow2xy-4y=8\)
\(\Rightarrow2y\left(x-2\right)=8\)
Ta có: \(8=\left(-1\right).\left(-8\right)=\left(-8\right).\left(-1\right)=\left(-2\right).\left(-4\right)=\left(-4\right)\left(-2\right)=2.4=4.2=1.8=8.1\)
Với 8 = (-1).(-8)
=> 2y=-1 ;x-2=-8 => y=\(-\frac{1}{2}\); x=-6
Bạn thay từng cái vào rồi tìm tiếp nhé
Giúp mình với. Mình Đang cần gấp.
Tìm các số nguyên x và y biết
X phần trừ ba bằng bốn phần y.
Bài 1:
(\(x-12\))80 + (y + 15)40 = 0
Vì (\(x-12\))80 ≥ 0 ∀ \(x\); (y + 15)40 ≥ 0 ∀ y
Vậy (\(x-12\))80 + (y + 15)40 = 0
⇔ \(\left\{{}\begin{matrix}x-12=0\\y+15=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=12\\y=-15\end{matrix}\right.\)
Vậy \(\left(x;y\right)\) = (12; -15)
Bài 2:
\(\dfrac{x}{y}\) = \(\dfrac{a}{b}\) (đk \(y;b\ne0\))
⇒ \(\dfrac{x}{a}\) = \(\dfrac{y}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}\) = \(\dfrac{y}{b}\) = \(\dfrac{x-y}{a-b}\)
⇒ \(\dfrac{x}{a}\) = \(\dfrac{x-y}{a-b}\)
⇒ \(\dfrac{x-y}{x}\) = \(\dfrac{a-b}{a}\) (đpcm)
Bài 1:
a,Ta có:\(\frac{3}{5}=\frac{3\times2}{5\times2}=\frac{6}{10}\) (1)
\(\frac{4}{5}=\frac{4\times2}{5\times2}=\frac{8}{10}\) (2)
Từ (1) và (2)=> Một phân số tối giản nằm giữa hai phân số trên là:\(\frac{7}{10}\)
b,Ta có:\(\frac{3}{5}=\frac{3\times3}{5\times3}=\frac{9}{15}\)
\(\frac{4}{5}=\frac{4\times3}{5\times3}=\frac{12}{15}\)
=> hai phân số ở giữa là:\(\frac{10}{15}=\frac{2}{3};\frac{11}{12}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\x-2=y-4\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\x-y=-4+2\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\x-y=-2\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x-y}{2-5}=\frac{-2}{-3}=\frac{2}{3}\)
=> \(\hept{\begin{cases}x=\frac{2}{3}\cdot2=\frac{4}{3}\\y=\frac{2}{3}\cdot5=\frac{10}{3}\end{cases}}\)