K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

Ta có: \(\frac{a+b}{b^2}\cdot\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}}\)

\(=\sqrt{\frac{\left(a+b\right)^2}{b^4}}\cdot\sqrt{\frac{a^2b^4}{\left(a+b\right)^2}}\)

\(=\sqrt{\frac{\left(a+b\right)^2}{b^4}\cdot\frac{a^2b^4}{\left(a+b\right)^2}}\)

\(=\sqrt{a^2}=\left|a\right|\)

NV
22 tháng 6 2019

a/

\(=\frac{a+b}{b^2}.\frac{\left|a\right|.b^2}{\left|a+b\right|}=\frac{\left(a+b\right).b^2.\left|a\right|}{b^2\left(a+b\right)}=\left|a\right|\)

b/

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{2\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

10 tháng 9 2020

\(\frac{a-b}{4b^2}\cdot\sqrt{\frac{4a^2b^4}{a^2-2ab+b^2}}\)

\(=\frac{a-b}{4b^2}\cdot\sqrt{\frac{\left(2ab^2\right)^2}{\left(a-b\right)^2}}\)

\(=\frac{a-b}{4b^2}\cdot\frac{2ab}{a-b}\)

\(=\frac{a}{2b}\)

13 tháng 8 2016

bài này cũng tương tự câu trên vậy tách màu ra là tính được mà . đâu có khó gì đâu bạn . 

27 tháng 9 2020

Biến đổi vế trái :vvv

\(VT=\frac{a+b}{b^2}\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}}\)

\(=\frac{a+b}{b^2}.\sqrt{\frac{\left(ab^2\right)^2}{\left(a+b\right)^2}}\)

\(=\frac{a+b}{b^2}.\frac{\left|ab^2\right|}{\left|a+b\right|}\)

\(=\frac{a+b}{b^2}.\frac{b^2.\left|a\right|}{a+b}=\left|a\right|=VP\left(đpcm\right)\)

( Vì a + b > 0 nên | a + b | = a + b ; b> 0 )

17 tháng 8 2015

Đặt A=\(\frac{a-b}{b^2}\sqrt{\frac{a^2b^4}{a^2-2ab+b^2}}=\frac{a-b}{b^2}\sqrt{\frac{a^2b^4}{\left(a-b\right)^2}}=\frac{a-b}{b^2}.\left|\frac{ab^2}{a-b}\right|\)

Với a<b thì : A=\(\frac{a-b}{b^2}.\frac{ab^2}{-\left(a-b\right)}=-a\)

Với a>b thì : A=\(\frac{a-b}{b^2}.\frac{ab^2}{a-b}=a\)

2 tháng 6 2017

\(\frac{a-b}{b^2}\sqrt{\frac{a^2b^4}{a^2-2ab+b^2}}\)

\(=\frac{a-b}{b^2}\sqrt{\frac{\left(ab^2\right)^2}{\left(a-b\right)^2}}\)

\(=\frac{a-b}{b^2}\cdot\frac{\sqrt{\left(ab^2\right)^2}}{\sqrt{\left(a-b\right)^2}}\)

\(=\frac{a-b}{b^2}\cdot\frac{\left|a\right|b^2}{\left|a-b\right|}\)

+) Nếu a>b => \(\frac{a-b}{b^2}\cdot\frac{ab^2}{a-b}=a\)

+) Nếu a<b => \(\frac{a-b}{b^2}\cdot\frac{ab^2}{b-a}=-a\)

19 tháng 6 2019

1/ \(\sqrt{\frac{m}{1-2x+x^2}}\cdot\sqrt{\frac{4m-8mx+4mx^2}{81}}\)

\(=\sqrt{\frac{m}{\left(1-x\right)^2}}\cdot\sqrt{\frac{4m\left(1-2x+x^2\right)}{81}}\)

\(=\sqrt{\frac{m}{\left(1-x\right)^2}}\cdot\sqrt{\frac{4m\left(1-x\right)^2}{81}}\)

\(=\sqrt{\frac{m}{\left(1-x\right)^2}\cdot\frac{4m\left(1-x\right)^2}{81}}\)

\(=\sqrt{\frac{4m^2}{81}}=\sqrt{\frac{\left(2m\right)^2}{9^2}}=\frac{2\left|m\right|}{9}\)

3/\(\frac{a+b}{b^2}\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}}\)

\(=\frac{a+b}{b^2}\sqrt{\frac{\left(ab^2\right)^2}{\left(a+b\right)^2}}\)

\(=\frac{a+b}{b^2}\cdot\frac{\left|a\right|b^2}{\left|a+b\right|}\)

TH1: \(\Rightarrow\frac{a+b}{b^2}\cdot\frac{\left|a\right|b^2}{-\left(a+b\right)}=-\left|a\right|\)

TH2: \(\Rightarrow\frac{a+b}{b^2}\cdot\frac{\left|a\right|b^2}{a+b}=\left|a\right|\)

19 tháng 6 2019

2/\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\frac{\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}\right)\cdot\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\frac{\sqrt{a}-a}{1-\sqrt{a}}\right)\cdot\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(=\frac{1-a\sqrt{a}+\sqrt{a}-a}{1-\sqrt{a}}\cdot\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(=\frac{1-a\sqrt{a}+\sqrt{a}-a}{1}\cdot\frac{1-\sqrt{a}}{\left(1-a\right)^2}\)

\(=\frac{\left(1-a\sqrt{a}+\sqrt{a}-a\right)\cdot\left(1-\sqrt{a}\right)}{\left(1-a\right)^2}\)

\(=\frac{1-a\sqrt{a}+\sqrt{a}-a-\sqrt{a}+a^2-a+a\sqrt{a}}{\left(1-a\right)^2}\)

\(=\frac{a^2-2a+1}{\left(1-a\right)^2}\)

\(=\frac{\left(a-1\right)^2}{\left(1-a\right)^2}=\frac{-\left(1-a\right)^2}{\left(1-a\right)^2}=-1\)

31 tháng 10 2017

đúng rồi

1 tháng 11 2017

 chó điên