Tính\(\frac{\sqrt{\sqrt{5}+\sqrt{2}}}{\sqrt{3\sqrt{5}-3\sqrt{2}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{\sqrt[6]{\left(7-4\sqrt{3}\right).\left(7+4\sqrt{3}\right)}-x}{\sqrt[4]{\left(9+4\sqrt{5}\right).\left(9-4\sqrt{5}\right)}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+\frac{\left(1+\sqrt{x}\right).\left(1-\sqrt{x}\right)}{1+\sqrt{x}}\)
\(=\sqrt{x}+1-\sqrt{x}=1\)
a/ \(A=\frac{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}{2-\sqrt{3}}+\frac{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}{2+\sqrt{3}}\)
\(A=\frac{2+\sqrt{3}+2-\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{4}{1}=4\)
b/\(A=\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\)
\(A=\frac{\sqrt{2}-1}{3-2\sqrt{2}}-\frac{\sqrt{2}+1}{3+2\sqrt{2}}\)
\(A=\frac{\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(\sqrt{2}+1\right)\left(3-2\sqrt{2}\right)}{9-8}\)
\(A=3\sqrt{2}+4-3-2\sqrt{2}-3\sqrt{2}+4-3+2\sqrt{2}=8\)
c/ \(A=\frac{\left(\sqrt{5}+\sqrt{3}\right)^2+\left(\sqrt{5}-\sqrt{3}\right)^2}{5-3}\)
\(A=\frac{5+2\sqrt{15}+3+5-2\sqrt{15}+3}{2}=8\)
d/ theo câu c có \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=8\)
\(\Rightarrow A=8-\frac{\left(\sqrt{5}+1\right)^2}{5-1}=\frac{32-5-2\sqrt{5}-1}{4}=\frac{2\left(13-\sqrt{5}\right)}{4}=\frac{13-\sqrt{5}}{2}\)
a/ Bạn ghi nhầm đề rồi
c/ \(2\sqrt{18\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5\sqrt{48}}\)
\(=2\sqrt{18}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-3\sqrt{5}.\sqrt{\sqrt{48}}\)
\(=2.3\sqrt{2}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-3\sqrt{5}.\sqrt{4\sqrt{3}}\)
\(=2.3\sqrt{2}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-6\sqrt{5}.\sqrt{\sqrt{3}}\)
\(=2\sqrt{\sqrt{3}}\left(3\sqrt{2}-\sqrt{5}-3\sqrt{5}\right)\)
\(=2\sqrt{\sqrt{3}}\left(3\sqrt{2}-4\sqrt{5}\right)\)\(=2\sqrt{2\sqrt{3}}\left(3-2\sqrt{10}\right)\)
f/ \(\sqrt{2}.\sqrt{2+\sqrt{3}}-2\left(\sqrt{3}-1\right)=\sqrt{4+2\sqrt{3}}-2\left(\sqrt{3}-1\right)\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-2\left(\sqrt{3}-1\right)=\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)\)
\(=\sqrt{3}+1-2\sqrt{3}+2=3-\sqrt{3}=\sqrt{3}\left(\sqrt{3}-1\right)\)
g/ \(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-2\sqrt{3}+2007\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-2\sqrt{3}+2007\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}-2\sqrt{3}+2007\)
\(=2007\)
\(H=\frac{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}-\frac{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}\)
\(H=\frac{\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2}{\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)}\)\(-\frac{\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)^2}{\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)}\)(cái này cùng dòng với cái phía trên)
\(H=\frac{\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2-\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)^2}{\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)}\)
\(H=\frac{\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2-\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)^2}{2\sqrt{3}}\)
\(H=\frac{-4}{2\sqrt{3}}\)
\(H=\frac{-2}{\sqrt{3}}\)
\(H=-\frac{2\sqrt{3}}{3}\)
Đặt \(A=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(A^2=2+\sqrt{3}+2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}\)
\(A^2=4+2\sqrt{4+2\sqrt{3}-2\sqrt{3}-3}\)
\(A^2=4+2=6\)
\(A=\sqrt{6}\)
Đặt \(B=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
\(B^2=2+\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}\)
\(B^2=4-2\sqrt{4+2\sqrt{3}-2\sqrt{3}-3}\)
\(B^2=4-2\sqrt{1}=4-2=2\)
\(B=\sqrt{2}\)
Thay vào H
\(\Rightarrow H=\frac{\sqrt{2}}{\sqrt{6}}-\frac{\sqrt{6}}{\sqrt{2}}=\frac{1}{\sqrt{3}}-\sqrt{3}=\frac{1-3}{\sqrt{3}}=\frac{-2}{\sqrt{3}}\)
\(\frac{\sqrt{\sqrt{5}+\sqrt{2}}}{\sqrt{3\sqrt{5}-3\sqrt{2}}}=\frac{\sqrt{\sqrt{5}+\sqrt{2}}}{\sqrt{3.\left(\sqrt{5}-\sqrt{2}\right)}}=\frac{\sqrt{\sqrt{5}+\sqrt{2}}}{\sqrt{3}.\sqrt{\sqrt{5}-\sqrt{2}}}\)
\(=\frac{(\sqrt{\sqrt{5}+\sqrt{2}})^2}{\sqrt{3}.\sqrt{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}}=\frac{\sqrt{5}+\sqrt{2}}{\sqrt{3}.\sqrt{5-2}}\)
\(=\frac{\sqrt{5}+\sqrt{2}}{\sqrt{3}.\sqrt{3}}=\frac{\sqrt{5}+\sqrt{2}}{3}\)