K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

Vẽ ΔABC vuông tại A có \(x=\widehat{B}\)

Ta có: \(\tan x=\tan\widehat{B}=\frac{AC}{AB}\)

\(\tan x=2\)

nên \(\frac{AC}{AB}=2\)

hay \(AC=2\cdot AB\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=AB^2+\left(2\cdot AB\right)^2=5\cdot AB^2\)

hay \(BC=AB\cdot\sqrt{5}\)

Xét ΔABC vuông tại A có \(\sin x=\sin\widehat{B}=\frac{AC}{BC}=\frac{2\cdot AB}{\sqrt{5}\cdot AB}=\frac{2}{\sqrt{5}}=\frac{2\sqrt{5}}{5}\)

\(\cos x=\cos\widehat{B}=\frac{AB}{BC}=\frac{AB}{\sqrt{5}\cdot AB}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}\)

\(\cot x=\cot\widehat{B}=\frac{1}{\tan x}=\frac{1}{2}\)

22 tháng 10 2023

tan x=2

=>\(\dfrac{sinx}{cosx}=2\)

=>sin x và cosx cùng dấu và \(sinx=2\cdot cosx\)

\(1+tan^2x=\dfrac{1}{cos^2x}\)

=>\(\dfrac{1}{cos^2x}=1+4=5\)

=>\(cos^2x=\dfrac{1}{5}\)

=>\(\left[{}\begin{matrix}cosx=\dfrac{1}{\sqrt{5}}\\cosx=-\dfrac{1}{\sqrt{5}}\end{matrix}\right.\)

TH1: \(cosx=\dfrac{1}{\sqrt{5}}\)

=>\(sinx=\sqrt{1-cos^2x}=\dfrac{2}{\sqrt{5}}\)

TH2: cosx=-1/căn 5

=>\(sinx=-\sqrt{1-cos^2x}=-\dfrac{2}{\sqrt{5}}\)

\(Q=\dfrac{sin^3x}{2sinx+cos^3x}\)

\(=\dfrac{\left(2\cdot cosx\right)^3}{2\cdot2cosx+cos^3x}\)

\(=\dfrac{8\cdot cos^3x}{4cosx+cos^3x}=\dfrac{8cos^2x}{4+cos^2x}\)

\(=\dfrac{8\cdot\dfrac{1}{5}}{4+\dfrac{1}{5}}=\dfrac{8}{5}:\dfrac{21}{5}=\dfrac{8}{21}\)

a: tan x(cot^2x-1)

\(=\dfrac{1}{cotx}\left(cot^2x-cotx\cdot tanx\right)\)

=cotx-tanx/cotx=cotx(1-tan^2x)

b: \(tan^2x-sin^2x=\dfrac{sin^2x}{cos^2x}-sin^2x\)

\(=sin^2x\left(\dfrac{1}{cos^2x}-1\right)=sin^2x\cdot\dfrac{sin^2x}{cos^2x}=sin^2x\cdot tan^2x\)

c: \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}=\dfrac{cos^2x-sin^2x}{\dfrac{cos^2x}{sin^2x}-\dfrac{sin^2x}{cos^2x}}\)

\(=\left(cos^2x-sin^2x\right):\dfrac{cos^4x-sin^4x}{sin^2x\cdot cos^2x}\)

\(=\dfrac{sin^2x\cdot cos^2x}{1}=sin^2x\cdot cos^2x\)

=>sin^2x*cos^2x-cos^2x=cos^2x(sin^2x-1)

=-cos^2x*cos^2x=-cos^4x

=>ĐPCM

29 tháng 9 2016

↔ sinx.cox + cos2

 

24 tháng 10 2023

Ta có \(\tan x-\cot x=m\) \(\Leftrightarrow\tan^2x+\cot^2x=m+1\)

\(\Leftrightarrow\dfrac{1}{\cos^2x}-1+\dfrac{1}{\sin^2x}-1=m+1\)

\(\Leftrightarrow A=\sqrt{\dfrac{1}{\sin^2x}+\dfrac{1}{\cos^2x}-9}=\sqrt{m-6}\)

NV
12 tháng 7 2021

a.

\(\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)^2-2sin^2\dfrac{x}{2}cos^2\dfrac{x}{2}=\dfrac{1}{2}\)

\(\Leftrightarrow2-\left(2sin\dfrac{x}{2}cos\dfrac{x}{2}\right)^2=1\)

\(\Leftrightarrow1-sin^2x=0\)

\(\Leftrightarrow cos^2x=0\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)

NV
12 tháng 7 2021

b.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\dfrac{7}{16}\)

\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=\dfrac{7}{16}\)

\(\Leftrightarrow16-12.sin^22x=7\)

\(\Leftrightarrow3-4sin^22x=0\)

\(\Leftrightarrow3-2\left(1-cos4x\right)=0\)

\(\Leftrightarrow cos4x=-\dfrac{1}{2}\)

\(\Leftrightarrow4x=\pm\dfrac{2\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

24 tháng 7 2023

đáp án không giống lắm 

 

24 tháng 7 2023

Dạ em cảm ơn ạ