số nguyên x nhỏ nhất để \(\frac{3}{x+1}\)có giá trị nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 3:x+1 có giá trị nguyên và bé nhất thì 3:x phải bé nhất. Suy ra x=3
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
Ta có : \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để \(A\) là số nguyên nên \(\frac{4}{\sqrt{x}-3}\) phải là số nguyên \(\left(1\right)\)
Khi \(x\) là số nguyên \(\sqrt{x}\) hoặc là số nguyên hoặc là số vô tỉ
Nếu \(\sqrt{x}\) là số vô tỉ thì \(\sqrt{x}-3\) là số vô tỉ , trái với \(\left(1\right)\)
Vậy \(\sqrt{x}\) là số nguyên
Từ \(\left(1\right)\Rightarrow\sqrt{x}-3\) phải là \(Ư\left(4\right)\) . Ta có bảng sau :
\(\sqrt{x}-3\) | \(-4\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(4\) |
\(\sqrt{x}\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) |
\(x\) | Không có giá trị của x | \(1\) | \(4\) | \(16\) | \(25\) | \(49\) |
Vậy \(x\in\left\{1;4;16;25;49\right\}\)
a) Ta có : \(x\ne1\)
Vì \(x\inℤ\Rightarrow\frac{3-x}{x-1}\inℤ\Leftrightarrow\hept{\begin{cases}3-x\inℤ\\x-1\inℤ\end{cases}}\)
Mà \(\frac{3-x}{x-1}=\frac{-x+3}{x-1}=\frac{-x+1+2}{x-1}=\frac{-\left(x-1\right)+2}{x-1}=-1+\frac{2}{x-1}\)
Lại có : \(-1\inℤ\Rightarrow E\inℤ\Leftrightarrow\frac{2}{x-1}\inℤ\Leftrightarrow2⋮x-1\)
\(\Rightarrow x-1\inƯ\left(2\right)\)
\(\Rightarrow x-1\in\left\{\pm1;\pm2\right\}\)
Lập bảng xét 2 trường hợp ta có :
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) |
Vậy \(x\in\left\{2;0;3;-1\right\}\)