tính giá trị biểu thức M=2016^10+2016^11/2016^10-2016^11
please :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=\(\frac{2016^{10}+2016^{11}}{2016^{10}-2016^{11}}=-\frac{2017}{2015}\)
\(M=\frac{2016^{10}+2016^{11}}{2016^{10}-2016^{11}}=\frac{2016^{10}\left(1+2016\right)}{2016^{10}\left(1-2016\right)}=\frac{-2017}{2015}\)
a+b+c=0 => a^2+b^2+c^2+2ab+2bc+2ca = 0 => a^2+b^2+c^2=0
=> a^2+b^2+c^2 = ab+bc+ca
=> 2a^2+2b^2+2c^2 = 2ab+2bc+2ca
=> (a-b)^2 + (b-c)^2 + (c-a)^2 = 0
=> a=b=c, mà a+b+c=0 => a=b=c=0
thay vào
M=(0-2016)2016+(0-2016)2016-(0-2016)2016=(-2016)2016=20162016
Chúc bạn hoc tốt ùng hộ nha
`@` `\text {Ans}`
`\downarrow`
`( 2020 - 2018 ) + ( 2016 - 2014 ) + ..........+ ( 16 - 14 ) + (12 - 10 )`
Số hạng của biểu thức trên là:
`(2020 - 10) \div 2 + 1 = 1006 (\text {số hạng})`
Chia bt thành các nhóm, mỗi nhóm có `2` số
`1006 \div 2 = 503 (\text {nhóm})`
`( 2020 - 2018 ) + ( 2016 - 2014 ) + ..........+ ( 16 - 14 ) + (12 - 10 )`
`= 2 + 2 + ... + 2 + 2`
Mà bt trên có `503` nhóm
`=> 2*503`
`=> 1006`
Vậy, giá trị biểu thức trên là `1006.`
`\text {KaizuulvG}`
a/ Điều kiện xác định \(\hept{\begin{cases}a^2+a\ne0\\a^2-a\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ne0\\a\ne1\\a\ne-1\end{cases}}}\)
b/ \(M=\frac{a^2-1}{2016+2015a^2}\left(\frac{2015a-2016}{a+a^2}+\frac{2016+2015a}{a^2-a}\right)\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}\left(\frac{2015a-2016}{a\left(a+1\right)}+\frac{2016+2015a}{a\left(a-1\right)}\right)\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}\left(\frac{2015a-2016}{a\left(a+1\right)}+\frac{2016+2015a}{a\left(a-1\right)}\right)\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}.\frac{2\left(2015a^2+2016\right)}{a\left(a+1\right)\left(a-1\right)}\)
\(=\frac{2}{a}=\frac{2}{2016}=\frac{1}{1008}\)
X16+y / X16-y
=> X16-y+y+y / X16-y
=> X16-y/X16-y + y/X16-y
=>1 + y/x16-y
k mk nha. Chúc bạn tốt
Theo đề ta có:
\(\frac{2016^{10}+2016^{11}}{2016^{10}-2016^{11}}\)
\(=\frac{2016^{10}\cdot\left(2016^0+2016^1\right)}{2016^{10}\cdot\left(2016^0-2016^1\right)}\)
\(=\frac{2016^0+2016}{2016^0-2016}\)
\(=\frac{1+2016}{1-2016}\)\(=\frac{2017}{-2015}\)\(=\frac{-2017}{2015}\)