K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 8 2020

Thay \(y=0\Rightarrow f\left(x\right)=f\left(x\right)+f\left(0\right)\Rightarrow f\left(0\right)=0\)

Đặt \(g\left(x\right)=f\left(x\right)-x^2\Rightarrow g\left(0\right)=0\)

\(g\left(x+y\right)=f\left(x+y\right)-\left(x+y\right)^2=f\left(x\right)+f\left(y\right)+2xy-\left(x+y\right)^2\)

\(=\left[f\left(x\right)-x^2\right]+\left[f\left(y\right)-y^2\right]=g\left(x\right)+g\left(y\right)\)

Vậy quy về tìm hàm \(g\) thỏa \(g\left(x+y\right)=g\left(x\right)+g\left(y\right)\)

\(g\left(x+\Delta x\right)=g\left(x\right)+g\left(\Delta x\right)\Rightarrow g\left(x+\Delta x\right)-g\left(x\right)=g\left(\Delta x\right)-g\left(0\right)\)

\(\Rightarrow\frac{g\left(x+\Delta x\right)-g\left(x\right)}{\Delta x}=\frac{g\left(\Delta x\right)-g\left(0\right)}{\Delta x}\)

Lấy giới hạn 2 vế: \(\lim\limits_{\Delta x\rightarrow0}\frac{g\left(x+\Delta x\right)-g\left(x\right)}{\Delta x}=\lim\limits_{\Delta x\rightarrow0}\frac{g\left(\Delta x\right)-g\left(0\right)}{\Delta x}\)

\(\Leftrightarrow g'\left(x\right)=g'\left(0\right)=const\) (theo định nghĩa về đạo hàm)

\(\Rightarrow g\left(x\right)=c.x\) với c là hằng số

\(\Rightarrow f\left(x\right)=x^2+cx\)

Thay vào pt dưới: \(\left(\frac{1}{x}\right)^2+c\left(\frac{1}{x}\right)=\frac{x^2+cx}{x^4}=\left(\frac{1}{x}\right)^2+c\left(\frac{1}{x^3}\right)\)

\(\Leftrightarrow c\left(\frac{1}{x}\right)=c\left(\frac{1}{x^3}\right)\)

Điều này thỏa mãn với mọi x khi và chỉ khi \(c=0\)

\(\Rightarrow f\left(x\right)=x^2\Rightarrow f\left(\sqrt{2019}\right)=2019\)

31 tháng 8 2020

Nguyễn Việt Lâm a thi VMO k thế :D

2 tháng 10 2021

Gửi bạnundefinedundefined

NV
13 tháng 1

Thay \(x=0;y=0\) vào giả thiết ta được \(f\left(0\right)=0\)

Thay \(y=0\) ta được \(f\left(x\right)+f\left(-x\right)=0\Rightarrow f\) là hàm lẻ

(Phân tích 1 chút: khi đã có hàm lẻ, ta cần thế tiếp 1 cặp sao cho "khử" được biểu thức phức tạp dạng hàm lồng đầu tiên, bằng cách tìm 1 giá trị y sao cho: \(x.f\left(y\right)-y=-\left(x+y\right)\) hoặc là \(x.f\left(y\right)-y=-\left(xy-x\right)\). Cái thứ nhất cho ta \(x.\left[f\left(y\right)+1\right]=0\Rightarrow f\left(y\right)=-1\) , nghĩa là ta chỉ cần tìm 1 hằng số c sao cho \(f\left(c\right)=-1\). Cái thứ 2 ko cho điều gì tốt nên bỏ qua. Bây giờ ta đi tìm c. Vế phải cần bằng -1, nghĩa là \(xy=-\dfrac{1}{2}\), vế trái cần khử bớt 2 số hạng. Nhưng trước khi có c thì \(f\left(x.f\left(y\right)-y\right)\) chưa khử được, nên ta cần khử cặp sau, bằng cách cho \(xy-x=-\left(x+y\right)\Rightarrow xy=-y\Rightarrow x=-1\), thay vào \(xy=-\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}\). Xong.)

Thế \(x=-1;y=\dfrac{1}{2}\) ta được:

\(f\left(-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\right)+f\left(-\dfrac{1}{2}+1\right)+f\left(-1+\dfrac{1}{2}\right)=-1\)

\(\Leftrightarrow f\left(-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\right)=-1\)

Đặt \(c=-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\) là 1 hằng số nào đó

\(\Rightarrow f\left(c\right)=-1\)

Thế \(y=c\) vào ta được:

\(f\left(x.f\left(c\right)-c\right)+f\left(cx-x\right)+f\left(x+c\right)=2c.x\)

\(\Leftrightarrow f\left(-x-c\right)+f\left(x+c\right)+f\left(cx-x\right)=2c.x\)

\(\Leftrightarrow f\left(cx-x\right)=2c.x\) (1)

- Nếu \(c=1\Rightarrow f\left(0\right)=2x\) ko thỏa mãn \(f\left(0\right)=0\) 

\(\Rightarrow c\ne1\), khi đó đặt \(cx-x=t\) \(\Rightarrow x=\dfrac{t}{c-1}\)

(1) trở thành \(f\left(t\right)=\dfrac{2c}{c-1}.t\)

Đặt \(\dfrac{2c}{c-1}=a\) \(\Rightarrow f\left(t\right)=a.t\) 

Hay hàm cần tìm có dạng \(f\left(x\right)=ax\) với a là hằng số

13 tháng 1

Anh giúp em ạ! Kết quả không như bạn làm ạ. 

https://hoc24.vn/cau-hoi/.8752594043792

16 tháng 7 2015

\(f\left(\frac{5}{7}\right)=f\left(\frac{1}{\frac{7}{5}}\right)=\frac{1}{\left(\frac{7}{5}\right)^2}.f\left(\frac{7}{5}\right)=\frac{25}{49}.f\left(1+\frac{2}{5}\right)=\frac{25}{49}.\left(f\left(1\right)+f\left(\frac{2}{5}\right)\right)\)

Ta có : \(f\left(\frac{2}{5}\right)=f\left(\frac{1}{5}+\frac{1}{5}\right)=f\left(\frac{1}{5}\right)+f\left(\frac{1}{5}\right)=2.f\left(\frac{1}{5}\right)=2.\frac{1}{5^2}.f\left(5\right)=\frac{2}{25}.f\left(1+1+1+1+1\right)\)

\(=\frac{2}{25}.\left(f\left(1\right)+f\left(1\right)+f\left(1\right)+f\left(1\right)+f\left(1\right)\right)=\frac{2}{25}.5=\frac{2}{5}\)

Vậy \(f\left(\frac{5}{7}\right)=\frac{49}{25}.\left(1+\frac{2}{5}\right)=\frac{25}{49}.\frac{7}{5}=\frac{5}{7}\)