Cho đường tròn O đường kính MN có dây MP và tiếp tuyến Nx. Đường thẳng đi qua O và // với MP cắt Nx tại K. Cm KP là tiếp tuyễn của đường tròn O
Helppppppppp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác OPMQ có
\(\widehat{OPM}+\widehat{OQM}=90^0+90^0=180^0\)
=>OPMQ là tứ giác nội tiếp đường tròn đường kính OM
=>M,P,O,Q cùng nằm trên đường tròn đường kính OM
b: Xét (O) có
ΔPQA nội tiếp
PA là đường kính
Do đó: ΔPQA vuông tại Q
=>AQ\(\perp\)QP tại Q
=>AQ\(\perp\)PB tại Q
Xét ΔAPB vuông tại A có AQ là đường cao
nên \(PQ\cdot PB=PA^2=\left(2R\right)^2=4R^2\)
a: Xét tứ giác OBKC có \(\widehat{OBK}+\widehat{OCK}=90^0+90^0=180^0\)
nên OBKC là tứ giác nội tiếp
=>O,B,K,C cùng thuộc một đường tròn
b: Ta có: ΔOMN cân tại O
mà OA là đường cao
nên OA là phân giác của góc MON
Xét ΔMOA và ΔNOA có
OM=ON
\(\widehat{MOA}=\widehat{NOA}\)
OA chung
Do đó: ΔMOA=ΔNOA
=>\(\widehat{OMA}=\widehat{ONA}\)
=>\(\widehat{ONA}=90^0\)
=>AN là tiếp tuyến của (O)
c: Xét (O) có
KB,KC là tiếp tuyến
Do đó: KB=KC
=>K nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OK là đường trung trực của BC
=>OK\(\perp\)BC tại I và I là trung điểm của BC
Xét ΔOBK vuông tại B có BI là đường cao
nên \(OI\cdot OK=OB^2\)
=>\(OI\cdot OK=ON^2\left(3\right)\)
d: Xét ΔNOA vuông tại N có NH là đường cao
nên \(OH\cdot OA=ON^2\left(4\right)\)
Từ (3) và (4) suy ra \(OI\cdot OK=OH\cdot OA\)
=>\(\dfrac{OI}{OH}=\dfrac{OA}{OK}\)
Xét ΔOIA và ΔOHK có
\(\dfrac{OI}{OH}=\dfrac{OA}{OK}\)
\(\widehat{HOK}\) chung
Do đó: ΔOIA đồng dạng với ΔOHK
=>\(\widehat{OIA}=\widehat{OHK}\)
=>\(\widehat{OHK}=90^0\)
mà \(\widehat{OHM}=90^0\)
nên K,H,M thẳng hàng
mà M,H,N thẳng hàng
nên K,M,N thẳng hàng
a: Xét (O) có
MA,MN là tiếp tuyến
=>MA=MN
mà OA=ON
nên OM là đường trung trực của AN
=>OM\(\perp\)AN(1)
Xét (O) có
ΔANB nội tiếp
AB là đường kính
Do đó: ΔANB vuông tại N
=>AN\(\perp\)NB(2)
Từ (1) và (2) suy ra OM//NB
b: Xét ΔMAO vuông tại A và ΔKOB vuông tại O có
AO=OB
\(\widehat{AOM}=\widehat{OBK}\)
Do đó: ΔMAO=ΔKOB
=>MA=KO
Xét tứ giác MAOK có
MA//OK
MA=OK
Do đó: MAOK là hình bình hành
mà \(\widehat{MAO}=90^0\)
nên MAOK là hình chữ nhật
=>KM\(\perp\)xy
a: Sửa đề: cắt tiếp tuyến tại A của đường tròn ở C
ΔOAB cân tại O
mà OC là đường cao
nên OC là phân giác của góc AOB
Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
=>\(\widehat{OAC}=\widehat{OBC}=90^0\)
=>CB là tiếp tuyến của (O)
b:ΔOAC=ΔOBC
=>CB=CA
=>C nằm trên đường trung trực của AB(1)
OA=OB
=>O nằm trên đường trung trực của AB(2)
từ (1) và (2) suy ra OC là đường trung trực của BA
=>OC\(\perp\)AB
mà OC//AD
nên AB\(\perp\)AD
=>ΔABD vuông tại A
Ta có: ΔABD vuông tại A
=>ΔABD nội tiếp đường tròn đường kính DB
mà ΔABD nội tiếp (O)
nên O là trung điểm của DB
=>D,O,B thẳng hàng
Xét ΔAKD vuông tại K và ΔCAO vuông tại A có
\(\widehat{ADK}=\widehat{COA}\)(hai góc so le trong, AD//CO)
Do đó: ΔAKD\(\sim\)ΔCAO