K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2020

Ta có A = 1 + 2 + 22 + 23 + ... + 2100

=> 2A = 2 + 22 + 23 + 24 + ... + 2101

Khi đó 2A - A = (2 + 22 + 23 + 24 + ... + 2101) - (1 + 2 + 22 + 23 + ... + 2100)

             => A  = 2101 - 1 

Vì 2101 - 1 < 2101

=> A < B

Vậy A < B

16 tháng 10 2020

A = 1 + 2 + 22 + 23 + ... + 2100

=> 2A = 2( 1 + 2 + 22 + 23 + ... + 2100 )

           = 2 + 22 + 23 + ... + 2101

=> A = 2A - A

         = 2 + 22 + 23 + ... + 2101 - ( 1 + 2 + 22 + 23 + ... + 2100 )

         = 2 + 22 + 23 + ... + 2101 - 1 - 2 - 22 - 23 - ... - 2100 

         = 2101 - 1 < 2101

=> A < B

Giải:

a) \(A=\dfrac{10^{1990}+1}{10^{1991}+1}\) và \(B=\dfrac{10^{1991}+1}{10^{1992}+1}\) 

Ta có:

\(A=\dfrac{10^{1990}+1}{10^{1991}+1}\) 

\(10A=\dfrac{10^{1991}+10}{10^{1991}+1}\) 

\(10A=\dfrac{10^{1991}+1+9}{10^{1991}+1}\) 

\(10A=1+\dfrac{9}{10^{1991}+1}\) 

Tương tự : 

\(B=\dfrac{10^{1991}+1}{10^{1992}+1}\) 

\(10B=\dfrac{10^{1992}+10}{10^{1992}+1}\) 

\(10B=\dfrac{10^{1992}+1+9}{10^{1992}+1}\) 

\(10B=1+\dfrac{9}{10^{1992}+1}\) 

Vì \(\dfrac{9}{10^{1991}+1}>\dfrac{9}{10^{1992}+1}\) nên \(10A>10B\) 

\(\Rightarrow A>B\left(đpcm\right)\) 

Chúc bạn học tốt!

7 tháng 7 2021

Thankss

28 tháng 12 2021

vuigiúp mk vs

28 tháng 12 2021

\(a=1+2+2^2+...+2^{2021}\)

\(\Rightarrow2a=2+2^2+2^3+...+2^{2022}\)

\(\Rightarrow2a-a=2+2^2+2^3+...+2^{2022}-1-2-2^2-...-2^{2021}\)

\(\Rightarrow a=2^{2022}-1\)

\(\Rightarrow a=2^{2022}-1=b\)

Có : \(S=1+2+2^2+2^3+....+2^{99}\)

\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)

\(\Rightarrow S=2^{100}-1< 2^{100}\)

Vậy \(S< 2^{100}\)

 S=1+2+22+23+....+299

⇒2S=2+22+23+....+2100

⇒2S−S=2100-1

S=2100-1

vì 2100 -1<2100

⇒S<2100

 

bạn viết rõ lũy thừa giúp mình với

 

7 tháng 1

\(A=B\)

b) Thay x=-4 vào (P), ta được:

\(y=\dfrac{-1}{4}\cdot\left(-4\right)^2=\dfrac{-1}{4}\cdot16=-4\)

Thay x=2 vào (P), ta được:

\(y=\dfrac{-1}{4}\cdot2^2=\dfrac{-1}{4}\cdot4=-1\)

Vậy: A(-4;-4) và B(2;-1)

Gọi (d): y=ax+b(a\(\ne\)0) là phương trình đường thẳng đi qua hai điểm A và B

\(\Leftrightarrow\left\{{}\begin{matrix}-4a+b=-4\\2a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6a=-3\\2a+b=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-1-2a=-1-2\cdot\dfrac{1}{2}=-1-1=-2\end{matrix}\right.\)

Vậy: (d): \(y=\dfrac{1}{2}x-2\)

19 tháng 5 2021

cảm ơn nhiều ạ