Tính \(B=\sqrt{97.98.99.101.102.103+36}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2\sqrt{2}+3\sqrt{2}-4\sqrt{2}=\sqrt{2}\)
B=6+18-8=16
\(A=2\sqrt{2}+3\sqrt{2}-4\sqrt{2}=\sqrt{2}\\ B=2\cdot3+3\cdot6-8=6+18-8=16\)
a: \(A=2^{\dfrac{1}{3}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{3}+\dfrac{2}{3}}=2^{\dfrac{3}{3}}=2^1=2\)
b: \(B=36^{\dfrac{3}{2}}=\left(6^2\right)^{\dfrac{3}{2}}=6^{2\cdot\dfrac{3}{2}}=6^3=216\)
c: \(C=36^{\dfrac{3}{2}}\cdot\left(\dfrac{1}{6}\right)^2=\left(6^2\right)^{\dfrac{3}{2}}\cdot\dfrac{1}{6^2}=\dfrac{6^{2\cdot\dfrac{3}{2}}}{6^2}=\dfrac{6^3}{6^2}=6\)
d: \(D=\sqrt{81}\cdot\left(\dfrac{1}{3}\right)^2=9\cdot\dfrac{1}{3^2}=9\cdot\dfrac{1}{9}=1\)
e: \(E=\left(3+2\sqrt{2}\right)^{50}\cdot\left(3-2\sqrt{2}\right)^{50}\)
\(=\left[\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\right]^{50}\)
\(=\left(9-8\right)^{50}=1^{50}=1\)
f: \(F=120^{\sqrt{5}+1}\cdot120^{3-\sqrt{5}}\)
\(=120^{\sqrt{5}+1+3-\sqrt{5}}=120^4\)
g: \(G=\left(3+2\sqrt{2}\right)^{2019}\cdot\left(3\sqrt{2}-4\right)^{2018}\)
\(=\left(3+2\sqrt{2}\right)^{2018}\cdot\left(3\sqrt{2}-4\right)^{2018}\cdot\left(3+2\sqrt{2}\right)\)
\(=\left[\left(3+2\sqrt{2}\right)\left(3\sqrt{2}-4\right)\right]^{2018}\left(3+2\sqrt{2}\right)\)
\(=\left(9\sqrt{2}-12+12-8\sqrt{2}\right)^{2018}\cdot\left(3+2\sqrt{2}\right)\)
\(=\left(\sqrt{2}\right)^{2018}\cdot\left(3+2\sqrt{2}\right)=2^{\dfrac{1}{2}\cdot2018}\cdot\left(3+2\sqrt{2}\right)\)
\(=2^{1009}\cdot\left(3+2\sqrt{2}\right)\)
Câu 1 :
a, \(=8+4-2.6=12-12=0\)
b, đk : x > 0 ; x khác 1
\(P=\left(\dfrac{\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right).\dfrac{x+\sqrt{x}}{1-\sqrt{x}}=\dfrac{1-\sqrt{x}}{1-\sqrt{x}}=1\)
\(a,\) ta có :
\(\Leftrightarrow\left\{{}\begin{matrix}A=\sqrt{3}+\sqrt{2^2.3}-\sqrt{3^2.3}-\sqrt{6^2}\\A=\sqrt{3}+2\sqrt{3}-3\sqrt{3}-6\\A=\sqrt{3}.\left(1+2-3\right)-6\\A=-6\end{matrix}\right.\)
\(\Rightarrow A=-6\) . vậy \(A=9\sqrt{5}\)
__________________________________________________________
\(b,\) với \(x>0\) và \(x\ne1\) . ta có :
\(B=\dfrac{2}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\left(\sqrt{x}-1\right)+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\sqrt{x}+1+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow\) \(B=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4}{\sqrt{x}}\)
vậy với \(x>0\) \(;\) \(x\ne1\) thì \(B=\dfrac{4}{\sqrt{x}}\)
để \(B=2\) thì \(\dfrac{4}{\sqrt{x}}=2\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
vậy để \(B=2\) thì \(x=4\)
Bạn Duy giúp mik vs
Tính:
a) \(\sqrt{0,36}+\sqrt{0,49}\)
b) \(\sqrt{\frac{4}{9}}-\sqrt{\frac{25}{36}}\)
a)\(\sqrt{0,36}\)+\(\sqrt{0,49}\)=0,6+0,7=1,3
b)\(\sqrt{\frac{4}{9}}\)-\(\sqrt{\frac{25}{36}}\)=2/3-5/6=4/6-5/6=-1/6
a) \(\sqrt{0,36}+\sqrt{0,49}=\sqrt{\left(0,6\right)^2}+\sqrt{\left(0,7\right)^2}=0,6+0,7=1,3\)
b) \(\sqrt{\frac{4}{9}}-\sqrt{\frac{25}{36}}=\sqrt{\left(\frac{2}{3}\right)^2}-\sqrt{\left(\frac{5}{6}\right)^2}=\frac{2}{3}-\frac{5}{6}=-\frac{1}{6}\)
Đặt \(A=\sqrt{x^2-6x+36}+\sqrt{x^2-6x+64}=18\)
\(B=\sqrt{x^2-6x+64}-\sqrt{x^2-6x+36}\)
\(\Rightarrow A.B=\left(x^2-6x+64\right)-\left(x^2-6x+36\right)=28\)
mà \(A=18\Rightarrow B=\frac{28}{18}=\frac{14}{9}\)
Câu 1:
a) Khi x =16 (t.m ĐKXĐ) thì B có giá trị là:
\(B=\dfrac{16-6\cdot4}{4-1}=\dfrac{-8}{3}\)
b) Ta có:
\(A=\dfrac{25\sqrt{x}+6}{x-36}-\dfrac{\sqrt{x}-1}{6-\sqrt{x}}+\dfrac{2\sqrt{x}}{\sqrt{x}+6}=\dfrac{25\sqrt{x}+6}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-6\right)}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\dfrac{25\sqrt{x}+6+x+5\sqrt{x}-6+2x-12\sqrt{x}}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\dfrac{3x+18\sqrt{x}}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}-6}\)
c) Ta có:
\(T=\sqrt{A\cdot B}=\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}-6}\cdot\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}}=\sqrt{\dfrac{3x\left(\sqrt{x}-6\right)}{\left(\sqrt{x}-6\right)\left(\sqrt{x}-1\right)}}=\sqrt{\dfrac{3\left(x-1\right)+3}{\sqrt{x}-1}}=\sqrt{3\left(\sqrt{x}+1\right)+\dfrac{3}{\sqrt{x}-1}}=\sqrt{3\left(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\right)+6}\overset{Cosi}{\ge}\sqrt{3\cdot2+6}=2\sqrt{3}\)
Dấu = xảy ra \(\Leftrightarrow\left(\sqrt{x}-1\right)^2=1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(t.m\right)\)
Gọi vận tốc dự định của hai bố con bạn Dũng là x(km/h)(x>0).Đổi: 10 phút =\(\dfrac{1}{6}\)(h)
thời gian dự định đi về quê là \(\dfrac{60}{x}\)(h)
vận tốc đi trên \(\dfrac{1}{3}\)quãng đường là đường xấu hai bố con bạn Dũng là \(x-10\)(km/h)
Thời gian thực tế đi về quê là \(\dfrac{\dfrac{1}{3}\cdot60}{x-10}+\dfrac{\dfrac{2}{3}\cdot60}{x}\)(h)
Vì hai bố con bạn Dũng đã về tới quê chậm mất 10 phút so với dự kiến
Nên ta có pt sau:
\(\left(\dfrac{\dfrac{1}{3}\cdot60}{x-10}+\dfrac{\dfrac{2}{3}\cdot60}{x}\right)-\dfrac{1}{6}=\dfrac{60}{x}\)
⇔\(\dfrac{20}{x-10}+\dfrac{40}{x}-\dfrac{1}{6}=\dfrac{60}{x}\)
⇔\(20x+40\left(x-10\right)-\dfrac{1}{6}x\left(x-10\right)=60\left(x-10\right)\)
⇔\(-\dfrac{1}{6}x^2+\dfrac{5}{3}x+200=0\)
⇒\(\left[{}\begin{matrix}x=40\left(n\right)\\x=-30\left(l\right)\end{matrix}\right.\)
Vậy ......