10x/5y=20x. Tính y,x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{15x^5y^3-10x^3y^2+20x^4y^4}{5x^2y^2}\)
\(=\dfrac{15x^5y^3}{5x^2y^2}-\dfrac{10x^3y^2}{5x^2y^2}+\dfrac{20x^4y^4}{5x^2y^2}\)
\(=3x^3y-2x+4x^2y^2\)
Khi x=-1 và y=2 thì \(P=3\cdot\left(-1\right)^3\cdot2-2\cdot\left(-1\right)+4\cdot\left(-1\right)^2\cdot2^2\)
\(=-6+2+16=4+16=20\)
\(A=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)
\(A_{min}=3\) khi \(x=-2\)
\(B=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)
\(B_{min}=1\) khi \(x=10\)
\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(C_{min}=2\) khi \(\left(x;y\right)=\left(-3;1\right)\)
\(x^2-6x+11=x^2-2\times3\times x+3^2+2=\left(x-3\right)^2+2\)
vì \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+2\ge2\)
vậy MIN = 2 . dấu = xảy ra <=> x = 3
\(x^2-20x+101=x^2-2\cdot10\cdot x+10^2+1=\left(x-10\right)^2+1\)
vì\(\left(x-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+1\ge1\)
vậy Min = 1 . dấu = xảy ra <=> x = 10
a) \(4x^2-81=\left(2x\right)^2-9^2=\left(2x-9\right)\left(2x+9\right)\)
b) \(3\left(x-y\right)+5x\left(y-x\right)=3\left(x-y\right)-5x\left(x-y\right)=\left(x-y\right)\left(3-5x\right)\)
c) \(x\left(x+y\right)+6x+6y=x\left(x+y\right)+6\left(x+y\right)=\left(x+y\right)\left(x+6\right)\)
d) \(20x-5y=5\left(4x-y\right)\)
e) \(=2xy\left(5xy-4y+2y\right)\)
g) \(4xy+8xyz=4xy\left(1+2z\right)\)
max A= -201 tại x=10(câu này dễ)
B= (x-2y+5)^2+(y-1)^2+2 suy ra max B=2 tại y=1 => x = -3. ^_^
Ta có
A=x2_6x+11=x2_2x3xx+32+2=(x-3)2+2>=2
=>MIN A=2 khi và chỉ khi x-3=0 hay x=3
B=x2-20x+101=x2-2x10xx+102+1=(x-10)2+1>=1
=>MIN B=1 khi và chỉ khi x-10=0 hay x=10
a) A = x2 - 6x + 11
A = (x2 - 6x + 9) + 2
A = (x - 3)2 + 2
Vì (x - 3)2 ≥ 0
Nên A = (x - 3)2 + 2 ≥ 2 (dấu bằng xảy ra khi x = 3)
Vậy Min A = 2 tại x = 3
b) B = x2 - 20x + 101
B = (x2 - 20x + 100) + 1
B = (x - 10)2 + 1
Vì (x - 10)2 ≥ 0
Nên B = (x - 10)2 + 1 ≥ 1 (dấu bằng xảy ra khi x = 10)
Vậy Min B = 1 tại x = 10
c) C = x2 - 4xy + 5y2 + 10x - 22y + 28
C = (x2 + 4y2 + 25 + 10x - 4xy - 20y) + (y2 - 2y + 1) + 2
C = (x - y + 5)2 + (y - 1)2 + 2
Vì (x - y + 5)2 ≥ 0
Và (y - 1)2 ≥ 0
Do đó (x - y + 5)2 + (y - 1)2 ≥ 0
Nên C = (x - y + 5)2 + (y - 1)2 + 2 ≥ 2 (dấu bằng xảy ra khi y = 1 và x = -4)
Vậy Min C = 2 tại x = -4 và y = 1
\(\dfrac{10^x}{5^y}\) = 20\(^x\)
5y = 10\(^x\) : 20\(^x\)
5y = \(\left(\dfrac{1}{2}\right)^x\)
y = 0; \(x\) = 0
Vậy (\(x;y\)) = (0; 0)