Cho hình thang vuông ABCD có AB vg với CD. Gọi E, F theo thứ tự là các điểm đối xứng của B và A qua CD . G, H theo thứ tự là các điểm đối xứng của C và E qua AD.
a, D là trung điểm của BH
b, AH song song với BE , CH song song với BG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình thang ABCD nên \(\hept{\begin{cases}AC//BD\\AB//CD\end{cases}}\)Vì AB//CD rồi nên không thể nói AB vuông với CD được bạn ơi?
a, Vì H,E đx nhau qua DF nên tam giác HDE cân tại D và có đường cao DF cũng là phân giác
Tương tự ta có tam giác DBE cân tại D có đường cao DC cũng là phân giác
Do đó \(\widehat{HDB}=\widehat{HDE}+\widehat{EDB}=2\left(\widehat{FDE}+\widehat{EDC}\right)=2\cdot90^0=180^0\)
Do đó B,H,D thẳng hàng
Mà \(DH=DE=DB\) (DHE và DEB cân tại D)
Vậy D là trung điêm BH
Bài 1:
Điểm I ở đâu ra vậy bạn?
Bài 2 :
Điểm E ở đâu ra vậy bạn ????????
Bài 1:
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó: ABEF là hình thoi
b: Xét ΔBIE có BI=BE
nên ΔBIE cân tại B
mà góc IBE=60 độ
nên ΔBIE đều
=>góc I=60 độ
Xét tứ giác AFEI có
EF//AI
góc I=góc A
Do đó AFEI là hình thang cân
c: Xét ΔBAD có
BF là đường trung tuyến
BF=AD/2
Do đó: ΔBAD vuông tại B
=>DB vuông góc với BI
Xét tứ giác BICD có
BI//CD
BI=CD
Do đó: BICD là hình bình hành
mà DB vuông góc với BI
nên BICD là hình chữ nhật
d: Xét ΔAED có
EF la trung tuyến
FE=DA/2
Do đó: ΔAED vuông tại E
=>góc AED=90 độ
Gọi K là giao điểm của AB và EF
O là giao điểm của AC và BD => OB = OD vì ABCD là hình chữ nhật
Ta có: EK // OB => \(\frac{EK}{OB}=\frac{AE}{AO}\)
EF//OD => \(\frac{EF}{OD}=\frac{AE}{AO}\)
=> \(\frac{EK}{OB}=\frac{EF}{OD}\) mà OD = OB
=> EK = EF mặt khác EH = EB ( H đối xứng với B qua E )
=> KBFH là hình bình hành
=> KB //=HF ( 1)
Ta lại có: KB //GD ( vì G thuộc DC ; AB //DC ; ABCD là hình chữ nhật )
và GK // BD ( giả thiết )
=> GKBD là hình bình hành
=> KB // = GD ( 2)
Từ ( 1) và (2) => HF // = GD
=> HFDG là hình bình hành có: ^FDG = 90 độ ( kề bù ^ADC = 90 độ )
=> HFDG là hình chữ nhật
=> HD = FG ( hai đường chéo bằng nhau)
Em tự vẽ hình nhé. Ý sau cô nói rõ yêu cầu hơn là chứng minh hình bình hành MNPQ có chu vi bằng tổng độ dài hai đường chéo của tứ giác ABCD.
Xét tứ giác EFMN có OF = ON; OE = OM nên nó là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)
Vậy thì MN // EF // AC và MN = EF = AC / 2 (Vì EF là đường trung bình tam giác BAC).
Hoàn toàn tương tự: QP // GH // AC và QP = GH = AC/2.
Vậy MNPQ là hình bình hành (Cặp cạnh đối song song và bằng nhau).
Khi đó ta có:
\(p_{MNPQ}=PQ+PN+NM+MQ=\left(PQ+MN\right)+\left(MQ+PN\right)=AC+BD.\)
Vậy ta đã chứng minh xong bài toán.