K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

\(2x^2-4xy+2y^2\\ =2\left(x^2-2xy+y^2\right)\\ =2\left(x-y\right)^2\)

22 tháng 12 2021

a) 2x2-4xy+2y2
= 2x2-2xy-2xy+2y2
= 2x(x-y)-2y(x-y)
= (2x-2y)(x-y)
b) x2+4xy+4y2-9
= (x+2y)2-32
= (x+2y-3)(x+2y+3)
c) x4-x3y+x-y
= x3(x-y)+(x-y)
= (x3+1)(x-y)

3 tháng 5 2018

Chọn A

Lập bảng biến thiên . Suy ra  y C Đ = - 4

23 tháng 3 2018

a)Cách tìm cực đại, cực tiểu của hàm số nhờ đạo hàm:

Quy tắc 1:

1. Tìm tập xác định.

2. Tính f'(x). Tìm các điểm tại đó f'(x) bằng 0 hoặc f'(x) không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

Quy tắc 2:

1. Tìm tập xác định.

2. Tính f'(x). Giải phương trình f'(x) = 0 và kí hiệu xi (i = 1, 2, 3, ...) là các nghiệm của nó.

3. Tính f"(x) và f"(xi)

4. Nếu f"(xi) > 0 thì xi là điểm cực tiểu.

Nếu f"(xi) < 0 thì xi là điểm cực đại.

 

 

Dựa vào Quy tắc 2, ta có:

y"(0) = -4 < 0 ⇒ x = 0 là điểm cực đại.

y"(-1) = y"(1) = 8 > 0 ⇒ x = ±1 là hai điểm cực tiểu.

18 tháng 12 2018

Đáp án là C

11 tháng 5 2017

Đáp án B.

Tập xác định D = R.

y' = 4x3 + 4x

y’ = 0 <=> 4x3 + 4x = 0 <=> x = 0.

Bảng biến thiên

4 tháng 11 2019

Đáp án C

Ta có y ' = 4 x 3 + 4 x = 4 x x 2 + 1 .  y’ đổi dấu tại 1 điểm, suy ra hàm số có 1 điểm cực trị.

19 tháng 5 2019

Đáp án là A

13 tháng 3 2017

21 tháng 2 2017

Đáp án A

Phương pháp:

+) Tính y’ và giải phương trình y' = 0

+) Lập bảng xét dấu của y’ và rút ra kết luận.

+) Điểm x = x0 được gọi là điểm cực tiểu của hàm số khi và chỉ khi qua điểm đó y’ đổi dấu từ âm sang dương.

Cách giải:

Bảng xét dấu y’:

 

Hàm số đạt cực tiểu tại x = 0, giá trị cực tiểu yCT = y(0) = 2

18 tháng 2 2019

Đáp án D

Phương pháp:

Cách tìm cực trị của hàm số đa thức:

- Tính y'

- Tìm các nghiệm của y' = 0.

- Tính các giá trị của hàm số tại các điểm làm cho y' = 0 và so sánh, rút ra kết luận.

Cách giải:

Ta có:  y ' = 4 x 3 − 4 x = 0 ⇔ 4 x x 2 − 1 = 0 ⇔ x = 0 ⇒ y = − 3 x = 1 ⇒ y = − 4 x = − 1 ⇒ y = − 4

Từ đó suy ra hàm số đạt cực tiểu tại  x = ± 1 và  y C T = − 4