K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

hình như đề bài sai rồi bạn

do mk biến đổi vé phải thành 4x^4+1 nên k thể thành 4(x^4+1):4 đk

8 tháng 11 2017

lolang

9 tháng 10 2017

Đặt A=\(\frac{1}{1^4+4}+\frac{3}{3^4+4}+\frac{5}{5^4+4}+...\frac{(2n-1)}{(2n-1)^4+4} \)

4A=\(\frac{4}{1^4+4}+\frac{3.4}{3^4+4}+\frac{5.4}{5^4+4}+...\frac{4(2n-1)}{(2n-1)^4+4} \)

Xét số hạng tổng quát

\((2n-1)^4+4=(2n-1)^4+4(2n-1)^2+4-4(2n-1)^2=((2n-1)^2+2(2n-1)+2)((2n-1)^2-2(2n-1)+2)\)

=>\(\frac{4(2n-1)}{(2n-1)^4+4}=\frac{1}{(2n-1)^2+2(2n-1)+2}-\frac{1}{(2n-1)^2-2(2n-1)+2} \)

Áp dụng vào A

=>\(\frac{1}{1}- \frac{1}{5}+\frac{1}{5} -\frac{1}{9}+...+\frac{1}{4n^2+1}-\frac{1}{(4(n-1)^2+1} \)

=>4A<1

=>A<\(\frac{1}{4} \)

7 tháng 10 2017

@soyeon_Tiểubàng giải giúp mình

28 tháng 3 2019

-Với n=1, ta thấy bthức đúng.

-Với n=k, có: \(\frac{1}{4+1^4}+\frac{3}{4+3^4}+...+\frac{2k-1}{4+\left(2k-1\right)^4}=\frac{k^2}{4k^2+1}=\frac{1}{4}-\frac{1}{4}.\frac{1}{4k^2+1}\)

-Giả sử bthức đúng với n=k+1, có:

\(\left(\frac{1}{4}-\frac{1}{4}.\frac{1}{4\left(k+1\right)^2+1}\right)-\left(\frac{1}{4}-\frac{1}{4}.\frac{1}{4k^2+1}\right)\)

\(=\frac{1}{4}\left(\frac{1}{4k^2+1}-\frac{1}{4\left(k+1\right)^2+1}\right)\)

\(=\frac{2k+1}{\left(4k^2+1\right)\left(4\left(k+1\right)^2+1\right)}=\frac{2k+1}{4+\left(2k+1\right)^4}\)

Vậy ta có đpcm.

16 tháng 5 2017

mẫu các phân số này có dạng a4 + 4 = a4 + 4a2 + 4 - 4a2 = (a2 - 2a + 2)(a2 + 2a + 2)

do đó các phân số sẽ biến đổi như sau:

\(\frac{a}{4+a^4}=\frac{a}{\left(a^2-2a+2\right)\left(a^2+2a+2\right)}=\frac{1}{4}\frac{4a}{\left(a^2-2a+2\right)\left(a^2+2a+2\right)}\)

\(=\frac{1}{4}\left(\frac{1}{a^2-2a+2}-\frac{1}{a^2+2a+2}\right)\)

do đó biểu thức M = \(\frac{1}{4}\left(\frac{1}{1}-\frac{1}{\left(2n-1\right)^2+2\left(2n-1\right)+2}\right)=\frac{n^2}{4n^2+1}\)

21 tháng 3 2018

giúp mình nhanh lên các bạn ơi

17 tháng 5 2017

Mẫu của các phân số có dạng : \(a^4+4=a^4+4a^2+4-4a^2=\left(a^2+2\right)^2-\left(2a\right)^2=\left(a^2+2-2a\right)\left(a^2+2+2a\right)\)

Do đó các phân số biến dổi như sau:

\(\dfrac{a}{a^4+4}=\dfrac{a}{\left(a^2+2-2a\right)\left(a^2+2+2a\right)}=\dfrac{1}{4}.\dfrac{4a}{\left(a^2+2-2a\right)\left(a^2+2+2a\right)}\)

Đặt biểu thức trên là M nhé!!!

Vậy M=\(M=\dfrac{1}{4}\left(\dfrac{1}{1}-\dfrac{1}{\left(2n-1\right)^2+2\left(2n-1\right)+2}\right)=\dfrac{n^2}{4n^2+1}\)

Bài này của lớp 9 á nha bạn!!! Em mới học lớp 6 à năm nay lên 7. Do thầy dạy trước nên có gì sai sót thì bỏ qua nhé!!!

17 tháng 5 2017

Xạo vừa thôi chứ? Không biết làm thì nói mình copy chứ sao lại nói thầy dạy trc?

Câu hỏi của Vy Thảo - Toán lớp 9 - Học toán với OnlineMath

Haha! Ngày nay mới onl Olm! Xem mấy câu hỏi hay thì...

15 tháng 1 2019

a, \(n^2+2n-4=n^2+2n-15+11=\left(n-3\right)\left(n-5\right)+11\)

Để \(n^2+2n-4⋮11\Leftrightarrow\left(n-3\right)\left(n+5\right)⋮11\Leftrightarrow\left[{}\begin{matrix}n-3⋮11\\n+5⋮11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=BS11+3\\n=BS11-5\end{matrix}\right.\)

c,\(\dfrac{n^3-n^2+2n+7}{n^2+1}=\dfrac{n^3+n-n^2-1+n+8}{n^2+1}=\dfrac{n\left(n^2+1\right)-\left(n^2+1\right)+n+8}{n^2+1}=n-1+\dfrac{n+8}{n^2+1}\)

Để \(n^3-n^2+2n+7⋮n^2+1\Leftrightarrow n+8⋮n^2+1\)

\(\Rightarrow\left(n+8\right)\left(n-8\right)⋮n^2+1\Rightarrow n^2-64⋮n^2+1\)

\(\Rightarrow n^2+1-65⋮n^2+1\Rightarrow65⋮n^2+1\)

\(\Rightarrow n^2+1\inƯ\left(65\right)=\left\{\pm1;\pm5;\pm13;\pm65\right\}\)

\(n^2+1\ge1\Rightarrow n^2+1\in\left\{1;5;13;65\right\}\)

\(\Rightarrow n\in\left\{0;\pm2;\sqrt{12};\pm8\right\}\)

15 tháng 1 2019

Câu c ý tưởng thì hay đó, mỗi tội thiếu bước thử lại