K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2019

\(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge2\sqrt{\frac{a^2}{a^2}}+2\sqrt{\frac{b^2}{b^2}}+2\sqrt{\frac{c^2}{c^2}}=6\)

Dấu = xảy ra khi a^4=b^4=c^4=1 <=> \(a=\pm1;b=\pm1;c\pm1\)

-> B = 3

15 tháng 3

gọi a/2019=b/2020=c/2021 là x

\(\Rightarrow\)a=2019*x ;b=2020*x;c=2021*x

\(\Rightarrow\)M=4*(2019*x-2020*x)*(2020-2021)-(2021*x-2019*x)^2

\(\Rightarrow\)M=4*(-x)*(-x)-(2x)^2

\(\Rightarrow\)M=4*x^2-4*x^2

⇒M=0

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Lời giải:
$a^2(b+c)=b^2(b+c)$

$\Leftrightarrow a^2(b+c)-b^2(b+c)=0$

$\Leftrightarrow (a^2-b^2)(b+c)=0$
$\Leftrightarrow (a-b)(a+b)(b+c)=0$

Vì $a,b,c$ đôi 1 khác nhau nên $a-b\neq 0$

$\Rightarrow (a+b)(b+c)=0$

Mà $b+c\neq 0$ (do nếu $b+c=0$ thì $a^2(b+c)=0$ (trái với đề))

$\Rightarrow a+b=0$

$\Rightarrow H=c^2(a+b)=0$