K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2020

= 4x2-y2+8y-16

= 4x2- (y2-8y+16)

= 4x2- (y-4)2

=(4x-y+4) (4x+y-4)banhqua

22 tháng 11 2019

Cách 1: x2 – 4x + 3

= x2 – x – 3x + 3

(Tách –4x = –x – 3x)

= x(x – 1) – 3(x – 1)

(Có x – 1 là nhân tử chung)

= (x – 1)(x – 3)

Cách 2: x2 – 4x + 3

= x2 – 2.x.2 + 22 + 3 – 22

(Thêm bớt 22 để có HĐT (2))

= (x – 2)2 – 1

(Xuất hiện HĐT (3))

= (x – 2 – 1)(x – 2 + 1)

= (x – 3)(x – 1)

28 tháng 10 2021

4x2 - 6xy + 10x3

= 2x(2x - 3y + 10x2)

28 tháng 10 2021

\(=2x\left(2x-3y+5x^2\right)\)

NV
1 tháng 1 2024

Đa thức đã cho không phân tích thành nhân tử được

2 tháng 1 2024

*Đoán nghiệm sử dụng tính chất của đa thức:

 Ta dễ dàng nhận thấy đa thức \(P\left(x\right)=x^3+4x^2-19x+24\) không có nghiệm là \(\pm1\).

 Giả sử \(P\left(x\right)\) có nghiệm hữu tỉ dạng \(\dfrac{p}{q}\left(p,q\inℤ\right)\), không mất tổng quát giả sử \(q>0\). Khi đó \(p|24\)\(q|1\) \(\Rightarrow q=1\).

 Khi đó do \(P\left(x\right)\) không có nghiệm là \(\pm1\) nên \(p\in\left\{\pm2,\pm3,\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)

 Thử lại, ta thấy không có số \(p\) nào thỏa mãn \(\dfrac{p}{q}\) là nghiệm của P(x). Vậy đa thức \(P\left(x\right)\) không có nghiệm hữu tỉ \(\Rightarrow\) \(P\left(x\right)\) không thể phân tích thành nhân tử.

 * Chú ý rằng chỉ khi \(degP\left(x\right)\le3\) hoặc \(degP\left(x\right)⋮̸2\) thì từ P(x) không có nghiệm hữu tỉ mới suy ra được P(x) không phân tích được thành nhân tử nhé. Nếu \(\left\{{}\begin{matrix}degP\left(x\right)\ge4\\degP\left(x\right)⋮2\end{matrix}\right.\) thì chưa chắc điều này đã đúng. VD: Đa thức \(Q\left(x\right)=x^4+4\) không có nghiệm hữu tỉ (nó thậm chí còn không có nghiệm thực) nhưng ta vẫn có thể phân tích thành nhân tử như sau:

 \(Q\left(x\right)=x^4+4=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

28 tháng 10 2021

\(4x^4y-4x^2y^3+12x^3y+12x^2y^2\)

\(=4x^2y\left(x^2-y^2+3x+3y\right)\)

\(=4x^2y\left(x-y-3\right)\left(x+y\right)\)

15 tháng 11 2021

a) \(=\left(2x-1\right)^2\)

b) \(=x\left(y^2-x^2+2x-1\right)=x\left[y^2-\left(x-1\right)^2\right]=x\left(y-x+1\right)\left(y+x-1\right)\)

15 tháng 11 2021

a. \(4x^2-4x+1=\left(2x\right)^2-2x.2.1+1^2=\left(2x-1\right)^2\)

b. \(xy^2-x^3+2x^2-x=x\left(y^2-x^2+2x-1\right)=x\left[y^2-\left(x^2-2x+1\right)\right]=x\left[y^2-\left(x-1\right)^2\right]=x\left(y-x+1\right)\left(y+x-1\right)\)

24 tháng 9 2021

\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Đề sai rồi bạn

10 tháng 10 2017

\(x^2+4x+3\)

\(=x^2+x+3x+3\)

\(=\left(x^2+x\right)+\left(3x+3\right)\)

\(=x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

29 tháng 12 2020

a. \(x^2+4x+3\)

\(\Leftrightarrow x^2+x+3x+3\)

\(\Leftrightarrow x\left(x+1\right)+3\left(x+1\right)\)

\(\Leftrightarrow\left(x+3\right)\left(x+1\right)\)