CMR: Với mọi a,b >0
Thì \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
Em chỉ cần nhất cái chỗ dấu "=" xảy ra khi nào thôi ạ, nên mong mấy pro giải chi tiết giùm em chút~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a, b, c > 0
=> a/b > 0 ; b/c > 0 ; c/a > 0
Áp dụng bđt Cauchy cho :
\(\frac{a}{b}+1\ge2\sqrt{\frac{a}{b}\cdot1}=2\sqrt{\frac{a}{b}}\)(1)
\(\frac{b}{c}+1\ge2\sqrt{\frac{b}{c}\cdot1}=2\sqrt{\frac{b}{c}}\)(2)
\(\frac{c}{a}+1\ge2\sqrt{\frac{c}{a}\cdot1}=2\sqrt{\frac{c}{a}}\)(3)
Nhân (1), (2) và (3) theo vế
=> \(\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)\left(\frac{c}{a}+1\right)\ge2\sqrt{\frac{a}{b}}\cdot2\sqrt{\frac{b}{c}}\cdot2\sqrt{\frac{c}{a}}=8\sqrt{\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}}=8\sqrt{\frac{abc}{abc}}=1\)
=> đpcm
Dấu "=" xảy ra <=> a = b = c
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3=\left(\frac{a}{b}+\frac{a}{a}\right)+\left(\frac{b}{c}+\frac{b}{b}\right)+\left(\frac{c}{a}+\frac{c}{c}\right)\)
\(=a\left(\frac{1}{a}+\frac{1}{b}\right)+b\left(\frac{1}{b}+\frac{1}{c}\right)+c\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(\ge a.\frac{4}{a+b}+b.\frac{4}{b+c}+c.\frac{4}{c+a}=4\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)
Dấu "=" <=> a = b = c
Em học lớp 8 nên không chắc lắm, vì đội tuyển có dạng này rồi nên em giúp chị nhé :
Áp dụng BĐT Cauchy cho hai số a,b dương ta có :
\(\left(a+b\right)\ge2\cdot\sqrt{ab}\) (1)
\(\frac{1}{a}+\frac{1}{b}\ge2\cdot\sqrt{\frac{1}{ab}}\) (2)
Nhân vế với vế của BĐT (1) và (2) ta được :
\(\left(a+b\right)\left(\frac{1}{b}+\frac{1}{b}\right)\ge2\cdot\sqrt{ab}\cdot2\cdot\sqrt{\frac{1}{ab}}=4\)
Dấu "=" xảy ra \(\Leftrightarrow a=b\) (đpcm)
Dat \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Ta co: \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge8\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Ta d̃i CM:\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Ta co:\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\left(dpcm\right)\)
Dau '=' xay ra khi \(a=b=c\)
\(\frac{2ab}{\left(c+a\right)\left(c+b\right)}+\frac{2bc}{\left(a+b\right)\left(a+c\right)}+\frac{2ca}{\left(b+a\right)\left(b+c\right)}\ge\frac{3}{2}\) thì phải
Xét a = b = c = 1 thì thỏa mãn bài ra
Xét a ,b,c khác 1. do a,b,c có vai trò như nhau nên giả sử \(a\le b\le c\)
Áp dụng BĐT cô-si cho 3 số a+b+1,1-a,1-b, ta có :
\(\left(a+b+1\right)\left(1-a\right)\left(1-b\right)\le\left(\frac{a+b+1+1-a+1-b}{3}\right)^3=1\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\le\frac{1}{a+b+1}\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\frac{1-c}{a+b+1}\)
Mà \(\frac{a}{b+c+1}\le\frac{a}{a+b+1};\frac{b}{a+c+1}\le\frac{b}{a+b+1}\)
\(\Rightarrow\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}\le\frac{a}{a+b+1}+\frac{b}{a+b+1}+\frac{c}{a+b+1}\)
do đó : \(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
\(\le\frac{a+b+c}{a+b+1}+\frac{1-c}{a+b+1}=1\)
dấu " = " xảy ra khi a = b = c = 0
vậy ...
\(\dfrac{a^3}{b\left(c+2\right)}+\dfrac{b}{3}+\dfrac{c+2}{9}\ge3\sqrt[3]{\dfrac{a^3b\left(b+2\right)}{27b\left(c+2\right)}}=a\)
Tương tự: \(\dfrac{b^3}{c\left(a+2\right)}+\dfrac{c}{3}+\dfrac{a+2}{9}\ge b\)
\(\dfrac{c^3}{a\left(b+2\right)}+\dfrac{a}{3}+\dfrac{b+2}{9}\ge c\)
Cộng vế:
\(VT+\dfrac{4\left(a+b+c\right)}{9}+\dfrac{2}{3}\ge a+b+c\)
\(\Rightarrow VT\ge\dfrac{5\left(a+b+c\right)}{9}-\dfrac{2}{3}\ge\dfrac{15}{9}-\dfrac{2}{3}=1\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Cái này chuẩn CBS dạng đặc biệt với hai tử số bằng 1
Dấu "=" xảy ra khi \(a=b\)
Cauchy đi mài ._.
Vì a, b > 0 nên áp dụng bđt Cauchy cho :
\(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{a}\cdot\frac{1}{b}}=2\sqrt{\frac{1}{ab}}=2\cdot\frac{\sqrt{1}}{\sqrt{ab}}=\frac{2}{\sqrt{ab}}\)
Nhân hai vế tương ứng ta có đpcm
Dấu "=" xảy ra <=> a = b