cho A=2^100+2^101+2^102+...+2^2007. tìm số dư khi A chia cho 2007
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+2+22+...+22007+22008
= 1+2+(22+23+24)+...(22006+22007+22008)
= 3+ 22(1+2+22)+...+22006(1+2+22)
=3 + 22.7+...+22006.7
=3 + 7 . (22+...+22006)
vi 7 . (22+...+22006) chia het cho 7
=>3 + 7 . (22+...+22006) chia cho 7 du 3
Đặt M=a2007+b2007
Do \(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)(1)
\(\Rightarrow\left(a^{101}+b^{101}\right)^2=\left(a^{100}+b^{100}\right)\left(a^{102}+b^{102}\right)\)
\(\Leftrightarrow a^{202}+b^{202}+2.a^{101}.b^{101}=a^{202}+a^{100}.b^{102}+a^{102}.b^{100}+b^{202}\)
\(\Leftrightarrow2.a^{101}.b^{101}=a^{100}.b^{100}\left(a^2+b^2\right)\)
\(\Leftrightarrow a^{100}.b^{100}\left(a^2-2ab+b^2\right)=0\)
\(\Leftrightarrow a^{100}.b^{100}\left(a-b\right)^2=0\)
Do a,b > 0 => (a-b)2=0 <=> a=b
Thay a=b vào (1) ta được
\(2.a^{100}=2.a^{101}=2.a^{102}\)
\(\Leftrightarrow a^{100}=a^{101}\)
\(\Leftrightarrow a^{100}\left(a-1\right)=0\)
Do a>0 nên a=1 =>b=1
Vậy M=12017+12017=2
Từ \(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Rightarrow a^{100}+b^{100}+a^{102}+b^{102}=2\left(a^{101}+b^{101}\right)\)
\(\Rightarrow a^{100}+b^{100}+a^{102}+b^{102}-2\left(a^{101}+b^{101}\right)=0\)
\(\Rightarrow\left(a^{102}-2a^{101}+a^{100}\right)+\left(b^{102}-2b^{101}+b^{100}\right)=0\)
\(\Rightarrow\left(a^{51}-a^{50}\right)^2+\left(b^{51}-b^{50}\right)^2=0\left(1\right)\)
Vif \(\hept{\begin{cases}\left(a^{51}-a^{50}\right)^2\ge0\forall a\\\left(b^{51}-b^{50}\right)^2\ge0\forall b\end{cases}}\)
\(\Rightarrow\left(a^{51}-a^{50}\right)^2+\left(b^{51}-b^{50}\right)^2\ge0\forall a,b\left(2\right)\)
Tứ (1) và (2) :
\(\Rightarrow\hept{\begin{cases}\left(a^{51}-a^{50}\right)^2=0\\\left(b^{51}-b^{50}\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^{51}-a^{50}=0\\b^{51}-b^{50}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^{51}=a^{50}\\b^{51}=b^{50}\end{cases}}\)
Vì a,b là các số thực dương nên \(a=b=1\)
\(\Rightarrow P=a^{2007}+b^{2007}=1^{2007}+1^{2007}=1+1=2\)
Vậy \(P=2\)
A=(1+2+2^2)+.......+2^2006(1+2+4)
A=7+.....+2^2006.7
A=7(1+.....+2^2006) chia hết cho 7
Vậy A chia hết cho 7
\(a^{100}+b^{100}=a^{101}+b^{101}\)
\(\Rightarrow a^{101}-a^{100}+b^{101}-b^{100}=0\)
\(\Rightarrow a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\left(1\right)\)
- Nếu a và b cùng lớn hơn 1 thì: a-1 và b-1 đều dương nên:
\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)>0\) không đúng với (1)
- Nếu a và b cùng nhỏ hơn 1 thì: a-1 và b-1 đều âm nên:
\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)< 0\) không đúng với (1)
- Nếu a và b có 1 số lớn hơn hoặc bằng 1 và 1 số nhỏ hơn hoặc bằng 1
Không mất tính tổng quát, giả sử \(a\ge1;b\le1\)
Ta có:
\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\)
\(\Rightarrow a^{100}\left(a-1\right)=b^{100}\left(b-1\right)\left(2\right)\)
Lại có:
\(a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Rightarrow a^{102}-a^{101}+b^{102}-b^{101}=0\)
\(\Rightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)=0\)
\(\Rightarrow a\cdot a^{100}\left(a-1\right)+b\cdot b^{100}\left(b-1\right)=0\)
\(\Rightarrow a\cdot a^{100}\left(a-1\right)-b\cdot b^{100}\left(b-1\right)=0\)
\(\Rightarrow a\cdot a^{100}\left(a-1\right)-b\cdot a^{100}\left(a-1\right)=0\)(theo (2))
\(\Rightarrow a^{100}\left(a-1\right)\left(a-b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a-1=0\\a-b=0\end{cases}}\)(do a>0)
\(\Rightarrow a=b=1\)\(\Rightarrow P=1^{2007}+1^{2007}=2\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>a≥1;b≤1
Ta có:
a100(a−1)+b100(b−1)=0
⇒a100(a−1)=b100(b−1)(2)
Lại có:
a101+b101=a102+b102
⇒a102−a101+b102−b101=0
<br class="Apple-interchange-newline"><div id="inner-editor"></div>⇒a100(a−1)+b100(b−1)=0(1)
- Nếu a và b cùng lớn hơn 1 thì: a-1 và b-1 đều dương nên:
a100(a−1)+b100(b−1)<0 không đúng với (1)
- Nếu a và b có 1 số lớn hơn hoặc bằng 1 và 1 số nhỏ hơn hoặc bằng 1
Không mất tính tổng quát, giả sử
<br class="Apple-interchange-newline"><div id="inner-editor"></div>⇒a100(a−1)=b100(b−1)(2)
Lại có:
a101+b101=a102+b102
⇒a102−a101+b102−b101=0
<br class="Apple-interchange-newline"><div id="inner-editor"></div>⇒a100(a−1)=b
Bài 2:
\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Rightarrow \left\{\begin{matrix} a^{100}(a-1)+b^{100}(b-1)=0(1)\\ a^{101}(a-1)+b^{101}(b-1)=0(2)\end{matrix}\right.\)
\(\Rightarrow a^{101}(a-1)-a^{100}(a-1)+b^{101}(b-1)-b^{100}(b-1)=0\) (lấy $(2)-(1)$)
\(\Leftrightarrow a^{100}(a-1)^2+b^{100}(b-1)^2=0\)
Dễ thấy \(a^{100}(a-1)^2\geq 0; b^{100}(b-1)^2\geq 0, \forall a,b\)
Do đó để tổng của chúng là $0$ thì \(a^{100}(a-1)^2=b^{100}(b-1)^2=0\)
Kết hợp với $a,b$ dương nên $a=b=1$
$\Rightarrow P=a^{2007}+b^{2007}=2$
Bài 1:
Vì $a_i\in \left\{\pm 1\right\}$ nên $a_ia_j\in \left\{\pm 1\right\}$ với mọi $i,j=\overline{1,n}$. Khi đó:
Để tổng gồm $n$ số hạng $a_1a_2+a_2a_3+...+a_na_1=0$ thì $n$ phải chẵn và trong tổng trên có $\frac{n}{2}$ số hạng có giá trị $1$ và $\frac{n}{2}$ số hạng có giá trị $-1$
\(\Rightarrow a_1a_2.a_2a_3....a_na_1=(1)^{\frac{n}{2}}.(-1)^{\frac{n}{2}}=(-1)^{\frac{n}{2}}\)
\(\Leftrightarrow (a_1a_2...a_n)^2=(-1)^{\frac{n}{2}}\)
Vì $(a_1a_2...a_n)^2$ luôn không âm nên $(-1)^{\frac{n}{2}}$ không âm.
$\Rightarrow \forall n\in\mathbb{N}^*$ thì $\frac{n}{2}$ chẵn
$\Rightarrow n\vdots 4$
Mà $2006\not\vdots 4$ nên $n$ không thể là $2006$