Giải hệ pt: x^3 +y=2,y^3+z =2,z^3+t=2,t^3+x=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^2+y^2+z^2=6\Leftrightarrow\left(x+y+z\right)^2-2\left(xy+xz+yz\right)=6\Leftrightarrow2^2-2\left(xy+xz+yz\right)=6\Leftrightarrow xy+xz+yz=-1\)
Ta lại có \(x^3+y^3+z^3=8\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)+3xyz=8\Leftrightarrow2\left[6-\left(-1\right)\right]+3xyz=8\Leftrightarrow3xyz=-6\Leftrightarrow xyz=-2\)
Vậy ta sẽ có hệ phương trình mới
\(\left\{{}\begin{matrix}x+y+z=2\\xy+xz+yz=-1\\xyz=-2\end{matrix}\right.\)
Coi x,y,z là nghiệm x1,x2,x3 của một phương trình bậc 3, theo công thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2+x_3=2\\x_1x_2+x_1x_3+x_2x_3=-1\\x_1x_2x_3=-2\end{matrix}\right.\)
Suy ra x1,x2,x3 là ba nghiệm của 1 phương trình
\(x^3-2x^2-x+2=0\Leftrightarrow\left(x-2\right)\left(x^2-1\right)=0\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=2\\x=-1\end{matrix}\right.\)
Vì x;y;z có vai trò như nhau trong hệ phương trình nên hệ phương trình đã cho có 6 nghiệm (x;y;z) là: (1;2;-1);(1;-1;2);(2;1;-1);(2;-1;1);(-1;2;1);(-1;1;2)
(x + y + z)2 = x2 + y2 + z2 + 2(xy + yz +zx) = 1
⇔ xy + yz + zx = 0
(x + y + z)3 = x3 + y3 + z3 + 3(x + y)(y + z)(z + x) = 1
⇔ Trong 3 số x, y, z có hai số đối nhau. Giả sử hai số đó là x, y
⇔ xy + z(x + y)=0
⇔ x = y = 0; z = 1
Vậy (x;y;z)=(0;0;1) và các hoán vị.
Hệ { x^3 + y^3 + z^3 = 3
{ x + y + z = 3
Ta có : x + y + z = 3
<=> x + y = 3 - z
<=> (x + y)^3 = (3 - z)^3
<=> x^3 + 3x^2y + 3xy^2 + y^3 = 27 - 27z + 9z^2 - z^3
<=> (x^3 + y^3 + z^3) + 3xy(x + y) + 9z(3 - z) = 27
<=> 3 + 3xy(3 - z) + 9z(3 - z) = 27
<=> 3xy(3 - z) + 9z(3 - z) = 24
<=> (3 - z)(xy + 3z) = 8 (*)
Vì x,y,z nguyên nên (*) tương tương với các hệ sau:
{ 3 - z = 8 => z = - 5 => x + y = 3 - z = 8
{ xy + 3z = 1 => xy = 1 - 3z = 16
=> x, y là nghiệm của pt: t^2 - 8t +16 = 0 <=> (t - 4)^2 = 0 <=> x = y = 4
{ 3 - z = - 8 => z = 11 => x + y = 3 - z = -8
{ xy + 3z = -1 => xy = - 1 - 3z = - 34
=> x, y là nghiệm của pt: t^2 + 8t - 34 = 0 => loại vì x, y không nguyên
{ 3 - z = 4 => z = -1 => x + y = 3 - z = 4
{ xy + 3z = 2 => xy = 2 - 3z = 5
=> x, y là nghiệm của pt: t^2 - 4t + 5 = 0 => vô nghiệm
{ 3 - z = - 4 => z = 7 => x + y = 3 - z = - 4
{ xy + 3z = - 2 => xy = - 2 - 3z = -23
=> x, y là nghiệm của pt: t^2 + 4t - 23 = 0 => loại vì x, y không nguyên
{ 3 - z = 2 => z = 1 => x + y = 3 - z = 2
{ xy + 3z = 4 => xy = 4 - 3z = 1
=> x, y là nghiệm của pt: t^2 - 2t +1 = 0 => x = y = 1
{ 3 - z = - 2 => z = 5 => x + y = 3 - z = - 2
{ xy + 3z = - 4 => xy = - 4 - 3z = - 19
=> x, y là nghiệm của pt: t^2 + 2t -19 = 0 => loại vì x, y không nguyên
{ 3 - z = 1 => z = 2 => x + y = 3 - z = 1
{ xy + 3z = 8 => xy = 8 - 3z = 2
=> x, y là nghiệm của pt: t^2 - t + 2 = 0 => vô nghiệm
{ 3 - z = - 1 => z = 4 => x + y = 3 - z = -1
{ xy + 3z = - 8 => xy = - 8 - 3z = - 20
=> x, y là nghiệm của pt: t^2 + t - 20 = 0 => x = - 5; y = 4 hoặc x = 4; y = -5
Kết luận: Vậy tập nghiệm nguyên của hệ là S ={(x,y,z)} = {(1,1,1);(4,4,-5);(-5,4,4);(4,-5,4)}
trc nhìn đề xong copier đã hành động xong rồi, mà copy ko nhìn hả bn ei :v