Chứng tỏ rằng :
a, 10^100+35 chia hết cho 5 và 9
b,10^100+98 chia hết cho 2 và 9
Giúp mik với các bạn ơi😭😭😭
Huhu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+2^2+2^3+2^4+...+2^{100}\)
\(=2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(=2+7\cdot\left(2^2+2^5+...+2^{98}\right)\)
=>A không chia hết cho 7 mà là chia 7 dư 2 nha bạn
a)Ta có:
10100+5 =1000...000 +5=1000..0005
100 số 0 99 số 0
—Vì số 1000...0005 có chữ số tận cùng là 5
99 số 0
==> 1000...0005 chia hết cho 5
99 số 0
— Vì số 1000...0005 có tổng các chữ số là 6
99 số 0
Mà 6 chia hết cho 3
Nên 1000...0005 chia hết cho 3
99 số 0
Vậy sô 1000...0005 chia hết cho cả 3 và 5
99 số 0
b)Ta có
1050+44=1000...000 +44=1000..00044
50 số 0. 48 số 0
—Vì 1000...00044 là số chẵn
48 số 0
Nên 1000...00044 chia hết cho 2
48 số 0
—Vì 1000...00044 có tổng các chữ số bằng 9
48 số 0
Mà 9 chia hết cho 9
Nên 1000...00044 chia hết cho 9
48 số 0
Vậy 1000...00044 chia hết cho cả 2 và 9
Không sai đề đâu bạn ạ mình kiểm tra rồi nó chỉ có kết quả thôi không có cách làm nên mình không hiểu ( như thế mới đăng )
a) \(A=10^{100}+5\)
- Tận cùng A là số 5 \(\Rightarrow A⋮5\)
- Tổng các chữ số của A là \(1+5=6⋮3\Rightarrow A⋮3\) \(\)
\(\Rightarrow dpcm\)
b) \(B=10^{50}+44\)
- Tận cùng B là số 4 là số chẵn \(\Rightarrow B⋮2\)
- Tổng các chữ số của B là \(1+4+4=9⋮9\Rightarrow B⋮9\)
\(\Rightarrow dpcm\)
a) \(10^5=\left(5\cdot2\right)^5⋮5\)
35 chia hết cho 5 nên biểu thức trên đúng
b) Như bài trên \(10^5⋮5\)
Mà 98 không chia hết cho 5
=> biểu thức trên chia hết cho 2
c) \(10^{100}+10^{100}+10\)
\(=2\left(10^{100}\right)+10\)
Biểu thức trên chia hết cho cả 2 và 5
a) Ta có :105 + 35 = 5(104 . 2 + 7)
đpcm
b) Vì 105 chia hết cho 5 và 2, mà 98 chia hết cho 2 nhưng ko chia hết cho 5(đpcm)
c)Ta có: 10100+10100+10 = 10(1099+1099+1) =2.5(....)
đpcm
mink làm thế thôi banh thấy đúng thì tốt rùi (vì mink đang rảnh)
A=2(1+2)+2^3(1+2)+...+2^2009(1+2)
=3(2+2^3+...+2^2009) chia hết cho 3
A=2(1+2+2^2)+2^4(1+2+2^2)+...+2^2008(1+2+2^2)
=7(2+2^4+...+2^2008) chia hết cho 7
Lũy thừa có cơ số là 10 thì luôn có tận cùng là 0
=>Tổng các chữ số của lũy thừa có cơ số là 10 là 1
a)Tận cùng của 105 là 0 + với 35 sẽ cho 1 số có tận cùng là 5
Mà số có tận cùng là 5 thì chia hết cho 5
Xét tổng các chữ số của 105+35=1+3+5=9
Mà các số có tổng các chữ số bằng 9 thì chia hết cho 9
b)Tận cùng của 105+98 sẽ cho 1 số chẵn nên chia hết cho 2
Chia hết cho 9 làm tương tự như trên
c)Xét:Để chia hết cho 2,5 thì chữ số tận cùng phải bằng 0
Mà 105 có tận cùng bằng 0 và 1880 tận cùng bằng 0 =>105+1880 chia hết cho 2,5
Xét :Để chia hết cho 3,9 thì tổng các chữ số phải chia hết cho 3,9
Tổng các chữ số của:105+1880=1+1+8+8=18
18 chia hết cho 3,9
Vậy,...........
1/ \(10^5+35=10035⋮5\) (do có tận cùng là 5) \(⋮9\) (do có tổng các cso chia hết cho 9)
2/ \(10^5+98=10098⋮2\) (do có tận cùng là cs chẵn) \(⋮9\)(do có tổng các cso chia hết cho 9)
3/ \(10^5+1880=11880⋮2\)(do có tổng các cso chia hết cho 2) \(⋮3\) (do có tổng các cso chia hết cho 3) \(⋮5\)(có tận cùng là 0)
a) \(10.100+35⋮5,9\)
10.100+35
= 1000+35
= 1035
=> \(1035⋮5,9\)
Vậy \(1035⋮5,9\)
b) \(10.100+98⋮2,9\)
= 10.100+98
= 1000+98
= 1098
=> \(1098⋮2,9\)
Vậy \(1098⋮2,9\)