1+1=? nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 1 - 1/2 ) + ( 1 - 1/3 ) + ( 1 - 1/4 ) + ( 1 - 1/5 )
= ( 2/2 - 1/2 ) + ( 3/3 - 1/3 ) + ( 4/4 - 1/4 ) + ( 5/5 - 1/5 )
= 1/2 + 2/3 + 3/4 + 4/5
= ( 1/2 + 3/4 ) + ( 2/3 + 4/5 )
= ( 2/4 + 3/4 ) + ( 10/15 + 12/15 )
= 5/4 + 22/15
= 75/60 + 88/60
= 163/60
( 1-1/2) . (1-1/3).(1-1/4).......(1-1/2016) . (1-1/2017)
=1/2.2/3.3.4x...x2015/2016.2016/2017
=1.2.3.4. ... .2015.2016/2.3.4.5. ... .2016.2017
(giống nhau bạn gạch đi )
=1/2017
1+1+1+1+1=5
chúc bn hok tốt
tk+kb vs mk nha m.n!
c.ơn m.n nhìu!
1 + 1 + 1 + 1 + 1+ 13 x 0 + 950 = ??
trả lời
1 + 1 + 1 + 1 + 1+ 13 x 0 + 950
= 5 + 0 + 950
= 955
hok tốt .
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)
\(A=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{99\times101}\)
\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}\times\frac{98}{303}\)
\(A=\frac{49}{303}\)
A= \(\frac{1}{15}\)+ \(\frac{1}{35}\)+ ... + \(\frac{1}{9999}\)
A= \(\frac{1}{3.5}\)+ \(\frac{1}{5.7}\) + ... + \(\frac{1}{99.101}\)
2. A= \(\frac{2}{3.5}\) + \(\frac{2}{5.7}\) + ... + \(\frac{2}{99.101}\)
2.A = \(\frac{1}{3}\) - \(\frac{1}{5}\)+ \(\frac{1}{5}\)-\(\frac{1}{7}\) + ... + \(\frac{1}{99}\) - \(\frac{1}{101}\)
2.A= \(\frac{1}{3}\) - \(\frac{1}{101}\)
2.A= \(\frac{101}{303}\) - \(\frac{3}{303}\)
2.A= \(\frac{98}{303}\)
A = \(\frac{98}{303}\) : 2
A = \(\frac{49}{303}\)
Vay A=\(\frac{49}{303}\)
\(F=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right).\left(1-\frac{1}{25}\right)...\left(1-\frac{1}{100}\right)\)
\(F=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}...\frac{99}{100}\)
\(F=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.\frac{4.6}{5.5}...\frac{9.11}{10.10}\)
\(F=\frac{1.2.3.4...9}{2.3.4...10}.\frac{3.4.5...11}{2.3.4.5...10}\)
\(F=\frac{1}{10}.\frac{11}{2}=\frac{11}{21}\)
\(\text{Đặt }S=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}.\)
\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
\(\Rightarrow2S-S=S=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)
\(\Rightarrow S=1-\frac{1}{2048}=\frac{2047}{2048}\)
1+1=1.1+1.1=1.(1+1)=1.2=2
TL:
1 + 1 = 2
_HT_