K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2020

                                                                 Bài làm

Với x = 3 thì : 

Đặt \(A=x^2-4x+6=x^2+2\cdot2x+2\cdot2+2=\left(x+2\right)^2+2\ge2\forall x\)

\(\Rightarrow\text{ Khi }x=3\text{ thì }Min_A=\left(x+2\right)^2+2=5^2+2=27\)

12 tháng 10 2020

x2 - 4x + 6 = ( x2 - 4x + 4 ) + 2 = ( x - 2 )2 + 2 ≥ 2 ∀ x

Dấu "=" xảy ra khi x = 2

=> GTNN của biểu thức = 2 <=> x = 2

18 tháng 10 2020

       \(x^2-4x+6\)

\(=x^2-4x+4+2\)

\(=\left(x-2\right)^2+2\)

\(\ge\left(3-2\right)^2+2\)

\(\ge1+2\)

\(\ge3\)

Dấu "=" xảy ra <=> x=3

Vậy min của biểu thức bằng 3 khi x=3

12 tháng 10 2020

                                                          Bài giải

Đặt \(A=x^2-4x+6=x^2-2\cdot2x+2^2+2=\left(x-2\right)^2+2\ge2\)

\(\Rightarrow\text{ Với }x\ge3\text{ }\text{thì }A_{min}\text{ khi }\left(x-2\right)^2_{min}\Rightarrow\text{ }x\text{ nhỏ nhất }\Rightarrow\text{ }x=3\)

Vậy với \(x=3\text{ thì }Min_A=3\)

19 tháng 8 2024

B = 2\(x^2\) - 4\(x\) - 8

B = 2(\(x^2\) - 2\(x\) + 4)  - 16

B = 2(\(x-2\))2 - 16 

Vì (\(x-2\))2 ≥ 0 ∀ \(x\) ⇒ 2(\(x-2\))2 ≥ 0 ∀ \(x\)

⇒ 2(\(x-2\)) - 16 ≥ -16 ∀ \(x\)

Dấu bằng xảy ra khi  (\(x-2\))2 = 0 ⇒ \(x-2=0\) ⇒ \(x=2\)

Vậy Bmin = -16 khi \(x=2\)

19 tháng 8 2024

Tìm min của C biết:

C = \(x^2\) - 2\(xy\) + 2y2 + 2\(x\) - 10y + 17

C = (\(x^2\) - 2\(xy\) + y2) + 2(\(x\) - y) + y2 - 8y + 16 + 1

C = (\(x\) - y)2 + 2(\(x\) - y) + 1  + (y2 - 8y + 16) 

C = (\(x-y+1\))2 + (y - 4)2 

Vì (\(x\) - y + 1)2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0 ∀ y

Dấu bằng xảy ra khi: \(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x-y+1=0\\y=4\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x-4+1=0\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-1+4\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Vậy Cmin = 0 khi (\(x;y\)) = (3; 4)

 

 

29 tháng 9 2019

\(B=2x^2-4x-8=2\left(x^2-2x-4\right)\)

\(=2\left(x^2-2x+1-5\right)\)

\(=2\left[\left(x-1\right)^2-5\right]\)

\(=2\left(x-1\right)^2-10\ge-10\)

Vậy \(B_{min}=-10\Leftrightarrow x-1=0\Leftrightarrow x=1\)

\(F=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)

Đặt \(x^2+5x+4=t\)

\(\RightarrowĐT=t\left(t+2\right)=t^2+2t+1-1\)

\(=\left(t+1\right)^2-1\ge-1\)

hay \(\left(x^2+5x+5\right)^2-1\ge-1\)

Vậy \(F_{min}=-1\Leftrightarrow x^2+5x+5=0\)

\(\Leftrightarrow x^2+5x+\frac{25}{4}-\frac{5}{4}=0\)

\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=\frac{5}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{5}{2}=\sqrt{\frac{5}{4}}\\x+\frac{5}{2}=-\sqrt{\frac{5}{4}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{5}{4}}-\frac{5}{2}\\x=-\sqrt{\frac{5}{4}}-\frac{5}{2}\end{cases}}\)

29 tháng 9 2019

\(G=4x-x^2=-\left(x^2-4x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4\le4\)

Vậy \(G_{max}=4\Leftrightarrow x-2=0\Leftrightarrow x=2\)

\(H=25-x-5x^2=-5\left(x^2+\frac{x}{5}-5\right)\)

\(=-5\left(x^2+2x.\frac{1}{10}+\frac{1}{100}-\frac{501}{100}\right)\)

\(=-5\left[\left(x+\frac{1}{10}\right)^2-\frac{501}{100}\right]\)

\(=-5\left(x+\frac{1}{10}\right)^2+\frac{101}{20}\le\frac{101}{2}\)

Vậy \(H_{max}=\frac{101}{2}\Leftrightarrow x+\frac{1}{10}=0\Leftrightarrow x=-\frac{1}{10}\)

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Lời giải:

1.

$4x+9=0$

$4x=-9$

$x=\frac{-9}{4}$
2.

$-5x+6=0$

$-5x=-6$

$x=\frac{6}{5}$

3.

$x^2-1=0$

$x^2=1=1^2=(-1)^2$

$x=\pm 1$

4.

$x^2-9=0$

$x^2=9=3^2=(-3)^2$

$x=\pm 3$

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

5.

$x^2-x=0$

$x(x-1)=0$

$x=0$ hoặc $x-1=0$

$x=0$ hoặc $x=1$

6.

$x^2-2x=0$

$x(x-2)=0$

$x=0$ hoặc $x-2=0$

$x=0$ hoặc $x=2$

7.

$x^2-3x=0$

$x(x-3)=0$

$x=0$ hoặc $x-3=0$ 

$x=0$ hoặc $x=3$

8.

$3x^2-4x=0$

$x(3x-4)=0$

$x=0$ hoặc $3x-4=0$

$x=0$ hoặc $x=\frac{4}{3}$

27 tháng 6 2021

Không có max

`a)sqrt{x^2-2x+5}`

`=sqrt{x^2-2x+1+4}`

`=sqrt{(x-1)^2+4}`

Vì `(x-1)^2>=0`

`=>(x-1)^2+4>=4`

`=>sqrt{(x-1)^2+4}>=sqrt4=2`

Dấu "=" xảy ra khi `x=1.`

`b)2+sqrt{x^2-4x+5}`

`=2+sqrt{x^2-4x+4+1}`

`=2+sqrt{(x-2)^2+1}`

Vì `(x-2)^2>=0`

`=>(x-2)^2+1>=1`

`=>sqrt{(x-2)^2+1}>=1`

`=>sqrt{(x-2)^2+1}+2>=3`

Dấu "=" xảy ra khi `x=2`

27 tháng 6 2021

c.ơn bạn nhiều

 

2 tháng 6 2021

`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`

2 tháng 6 2021

16+5=23 :))

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tính giá trị nhỏ nhất:

\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$

Vậy $A_{\min}=-3$

Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$ 

Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$

$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$

$=(x^2+5x)^2-36\geq 0-36=-36$

Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

 

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tìm giá trị lớn nhất:

$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$

Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$

Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$

$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$

Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$