Xác định số a để:
a) Đa thức 2x3 - 3x2 + x + a chia hết cho đa thức x + 2
b) Đa thức 2x2 + ax + 5 chia cho đa thức x + 3 dư 41
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Đặt \(f\left(x\right)=2x^3-3x^2+x+a\)
Ta có: phép chia \(f\left(x\right)\) cho \(x+2\) có dư là \(R=f\left(-2\right)\)
\(\Rightarrow f\left(-2\right)=2.\left(-2\right)^3-3.\left(-2\right)^2+\left(-2\right)+a\)
\(f\left(-2\right)=2.\left(-8\right)-3.4-2+a\)
\(f\left(-2\right)=-16-12-2+a\)
\(f\left(-2\right)=-20+a\)
Để \(f\left(x\right)\) chia hết cho \(x+2\) thì \(R=0\) hay \(f\left(-2\right)=0\)
\(\Rightarrow-20+a=0\Leftrightarrow a=20\)
Thực hiện phép chia:
2x3 – 3x2 + x + a chia hết cho x + 2
⇔ số dư = a – 30 = 0
⇔ a = 30.
Cách 2: Phân tích 2x3 – 3x2 + x + a thành nhân tử có chứa x + 2.
2x3 – 3x2 + x + a
= 2x3 + 4x2 – 7x2 – 14x + 15x + 30 + a – 30
(Tách -3x2 = 4x2 – 7x2; x = -14x + 15x)
= 2x2(x + 2) – 7x(x + 2) + 15(x + 2) + a – 30
= (2x2 – 7x + 15)(x + 2) + a – 30
2x3 – 3x2 + x + a chia hết cho x + 2 ⇔ a – 30 = 0 ⇔ a = 30.
Số dư của phép chia đa thức \(\text{f( x ) = 2x^3 - 3x^2 + x + a}\) cho \(\text{x + 2}\) là
\(\text{f ( -2 ) = 2(-2) ^3 - 3 (-2 )^2 + ( - 2 ) + a = -30 + a}\)
Để phép chia là chia hết thì số dư bằng \(\text{0}\)
Hay \(\text{-30 + a = 0}\) \(\Rightarrow\) \(\text{a = 30}\)
Đa thức \(f\left(x\right)=2x^3-3x^2+x+a\) chia hết cho đa thức \(x+2\)
\(\Leftrightarrow\)\(f\left(-2\right)=0\)
\(\Leftrightarrow\)\(2.\left(-2\right)^3-3.\left(-2\right)^2+\left(-2\right)+a=0\)
\(\Leftrightarrow\)\(-30+a=0\)
\(\Leftrightarrow\)\(a=30\)
Vậy \(a=30\)thì \(2x^3-3x^2+x+a\)chia hết cho \(x+2\)
p/s: bn có thế lm theo cách truyền thống: đặt tính chia ra rồi đặt dư = 0 và tìm a
hoặc dùng hệ số bất định
2x^3-3x^2+x+a | x+2
------------------|-------------
2x^3-3x^2 | 2x^2-7x+15
2x^2+4x^2
-7x^2+x
-7x^2-14x
15x+a
15x+30
\(2x^3-3x^2+x+a\div x+2\)
Để đa thức \(2x^3+3x^2+x+a⋮x+2\)
\(\Rightarrow15x+a=15x+30\)
\(\Rightarrow a-30=0\Rightarrow a=30\)
\(2x^3-3x^2+x+a=\left(x+2\right)\left(2x^2-7x+15\right)+\left(a-30\right)=Q\left(x\right).\left(x+2\right)\)
=> x=-2 thì \(2.\left(-2\right)^2-3\left(-2\right)^2+\left(-2\right)+a=Q\left(x\right).0=0\)
<=> -16 -12 -2 +a =0
<=> a -30 =0
=> a= 30.
\(a,\Leftrightarrow4x^3-2x^2+a=\left(2x-3\right).a\left(x\right)\)
Thay \(x=\dfrac{3}{2}\Leftrightarrow4.\dfrac{27}{8}-2.\dfrac{9}{4}+a=0\)
\(\Leftrightarrow\dfrac{27}{2}-\dfrac{9}{2}+a=0\\ \Leftrightarrow a=-9\)
\(b,\Leftrightarrow3x^3+2x^2+x+a=\left(x+1\right).b\left(x\right)+2\)
Thay \(x=-1\Leftrightarrow-3+2-1+a=2\Leftrightarrow a=4\)