cho a+b+c=1, a b c >0. chứng minh ab+a+bc\(\ge9\sqrt{\left(\frac{2}{9}-c^2\right)\left(\frac{2}{9}-b^2\right)\left(\frac{2}{9}-a^2\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(a+2b+c\right)^2}+\frac{1}{\left(a+b+2c\right)^2}\)
\(\le\frac{1}{4\left(a+b\right)\left(a+c\right)}+\frac{1}{4\left(b+a\right)\left(b+c\right)}+\frac{1}{4\left(c+a\right)\left(c+b\right)}\)
\(=\frac{2\left(a+b+c\right)}{4\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Giờ ta cần chứng minh
\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{9}{16\left(ab+bc+ca\right)}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Ta có:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(=\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Vậy ta có ĐPCM
Kết hợp Mincôpxki và C-S:
\(VT\ge\sqrt{\left(\frac{3}{a+b}+\frac{3}{b+c}+\frac{3}{a+c}\right)^2+\left(a+b+c\right)^2}\)
\(VT\ge\sqrt{\left(\frac{27}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}=\sqrt{\frac{405}{4\left(a+b+c\right)^2}+\frac{81}{\left(a+b+c\right)^2}+\left(a+b+c\right)^2}\)
\(VT\ge\sqrt{\frac{405}{12\left(a^2+b^2+c^2\right)}+2\sqrt{\frac{81\left(a+b+c\right)^2}{\left(a+b+c\right)^2}}}=\sqrt{\frac{405}{12.3}+18}=\frac{3\sqrt{13}}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Í em mới lớp 7 thôi hả
Vậy mà giỏi đến mức được làm công tác viên òi
Tức là chị là chị của công tác viên hí hí
~ lớp 8 ~
Lớp 7 nhưng chịu quá nhiều tai tiếng ạ,vs như lúc đó ko thuộc hằng đẳng thức bình phương của một tổng,làm xàm thế là...
Theo bđt Cauchy - Schwart ta có:
\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)
\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)
Đặt \(ab+bc+ca=x;abc=y\).
Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)
\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )
Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1
Bài 1
*Chứng minh bằng AM-GM
Áp dụng bất đẳng thức AM-GM ta có :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}\Rightarrow}\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\sqrt[3]{abc\cdot\frac{1}{abc}}=9\)
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=b=c
Bài 1
*Chứng minh bằng Cauchy-Schwarz
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)
=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\cdot\frac{9}{a+b+c}=9\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b=c
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)
Từ ( 1 ) và ( 2 ) có đpcm