K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2-4x+4-y^2\)

\(=\left(x-2\right)^2-y^2\)

\(=\left(x-2-y\right)\left(x-2+y\right)\)

24 tháng 9 2021

(x - 2)2 - y2 = (x - 2 - y)(x - 2 + y)

\(x^2-4x+4-y^2\)

\(=\left(x-2\right)^2-y^2\)

\(=\left(x-2-y\right)\left(x-2+y\right)\)

24 tháng 9 2021

(x - 2)2 - y2 = (x - 2 - y)(x - 2 + y)

1 tháng 8 2017

x^5+x+1

=x(x^4+1)+1 

=(x^2+x+1)(x^3-x^2+1) 

1 tháng 8 2017

Ta có : x5 + x + 1 

= x5 + x4 - x4 - x+ x3 + x2 - x2 - x + x + 1

=  (x5 + x4) - (x4 + x3) + (x3 + x2) - (x2 + x) + (x + 1)

= x5(x + 1) - x4.(x + 1) + x3(x + 1) - x2(x + 1) + (x + 1)

= (x + 1)(x5 - x4 + x3 - x2 + 1)

21 tháng 8 2018

\(x5+x-1 = x5-x4+x3+x4-x3+x2-x2+x-1 = x3(x2-x+1)+x2(x2-x+1)-(x2-x+1) = (x2-x+1)(x3+x2-1) \)

hc tốt nha !!!!!!!!!

1 tháng 8 2021

KHÔNG BÍT

9 tháng 7 2016

\(x^5+x+1=x^5-x^2+x^2+x+1=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

6 tháng 10 2016

a) \(x^7+x^2+1\)

\(=x^7-x+x+x^2+1\)

\(=\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^4+x\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^5-x^4+x^2-x\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^5-x^4+x^2-x+1\right)\left(x^2+x+1\right)\)

6 tháng 10 2016

b) \(x^7+x^5+1\)

\(=x^7+x^6+x^5-x^6+1\)

\(=\left(x^7+x^6+x^5\right)-\left(x^6-1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x^3+1\right)\left(x^3-1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x^4-x^3+x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^5-x^4+x^3-x^2+1\right)\left(x^2+x+1\right)\)

10 tháng 7 2016

\(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20=\left[\left(x-1\right)\left(x-7\right)\right].\left[\left(x-3\right)\left(x-5\right)\right]-20\)

\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)

Đặt \(x^2-8x+11=t\) \(\Rightarrow\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20=\left(t-4\right)\left(t+4\right)-20=t^2-16-20=t^2-36=\left(t-6\right)\left(t+6\right)\)\(\Rightarrow\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20=\left(x^2-8x+11-6\right)\left(x^2-8x+11+6\right)=\left(x^2-8x+17\right)\left(x^2-8x+5\right)\)

18 tháng 7 2015

b ( x^2 + 3x + 2)( x^2 + 7x + 12) - 24 

= [ x^2 +x + 2x + 2) ( x^2 +3x + 4x + 12) - 24

= [x(x+1) + 2 (x + 1) [x(x+3) + 4(x+3) ] - 24

= ( x + 1)(x+2) (x+3)(x+4) - 24

= ( x + 1).(x+4) (x+2)(x+3) - 24

=(x^2 + 5x + 4)(x^2+5x+6) - 24 

Đặt x^2 + 5x +4 =y ta có:

= y(y+2) - 24

= y^2 + 2y - 24 

= y^2 + 2y + 1 - 25 

= ( y + 1)^2 - (5)^2 

= ( y + 1 - 5 )( y + 1 + 5)

= ( y- 4)(y +6) 

Thay y trở lại là đc 

đúng nha