9^3.3^2/3^9.2022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{12^{15}\cdot3^4-4^5\cdot3^9}{27^3\cdot2^{10}-32^3\cdot3^9}\\ =\dfrac{\left(2^2\cdot3\right)^{15}\cdot3^4-\left(2^2\right)^5\cdot3^9}{\left(3^3\right)^3\cdot2^{10}-\left(2^5\right)^3\cdot3^9}\\ =\dfrac{2^{30}\cdot3^{15}\cdot3^4-2^{10}\cdot3^9}{3^9\cdot2^{10}-2^{15}\cdot3^9}\\ =\dfrac{3^9\cdot2^{10}\left(2^{20}\cdot3^{10}\right)}{3^9\cdot2^{10}\left(1-2^5\right)}\\ =\dfrac{\left(2^2\right)^{10}\cdot3^{10}}{1-32}\\ =\dfrac{\left(2^2\cdot3\right)^{10}}{-31}\\ =\dfrac{-12^{10}}{31}\)
\(B=\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{99}{49^2\cdot50^2}\\ =\dfrac{2^2-1^2}{1^2\cdot2^2}+\dfrac{3^2-2^2}{2^2\cdot3^2}+...+\dfrac{50^2-49^2}{49^2\cdot50^2}\\ =\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{49^2}-\dfrac{1}{50^2}\\ =1-\dfrac{1}{2500}\\ =\dfrac{2499}{2500}\)
a: =>3x-2x=-11-9
=>x=-20
c: \(\Leftrightarrow\left(2x+3\right)\left(x^2+3\right)=2\left(2x+3\right)\)
=>2x+3=0
hay x=-3/2
Bạn coi lại đề câu a, chỗ \(\log_5-x\) đó
b.
\(\Leftrightarrow9^x-3^x-2.3^x-2=0\)
\(\Leftrightarrow3^x\left(3^x-1\right)-2\left(3^x-1\right)=0\)
\(\Leftrightarrow\left(3^x-2\right)\left(3^x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3^x=2\\3^x=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\log_32\\x=0\end{matrix}\right.\)
=7^3.(1+7^2).5^4.(1+5^2).(3^4-3^4)
=7^3.(1+7^2).5^4.(1+5^2).0
=0
\((7^3+7^5)\times(5^4+5^6)\times(3^3\times3-9^2)\)
\(=(7^3+7^5)\times(5^4+5^6)\times0\)
\(=0\)
a: 3x+9=2x-11
=>3x-2x=-11-9
=>x=-20
b: \(\dfrac{2x-3}{5}-2=\dfrac{2-x}{4}\)
=>4(2x-3)-20=5(2-x)
=>8x-12-20=10-5x
=>8x-32=10-5x
=>13x=42
hay x=42/13
`@` `\text {Ans}`
`\downarrow`
`a,`
`5.125.25 \div 5^6`
`=`\(5\cdot5^3\cdot5^2\div5^6\)
`=`\(5^{1+3+2-6}=5^{6-6}=5^0=1\)
`b,`
\(2^{14}\div\left(2^6\cdot32\right)\)
`=`\(2^{14}\div\left(2^6\cdot2^5\right)\)
`=`\(2^{14}\div2^{11}=2^3\)
`c,`
`3.3^5\div 27`
`=`\(3\cdot3^5\div3^3\)
`=`\(3^{1+5-3}\)
`=`\(3^3\)
`d,`
\(2^{15}\div\left(2^6\cdot32\right)=2^{15}\div\left(2^6\cdot2^5\right)=2^{15}\div2^{11}=2^4\)
`e,`
\(3^2\cdot27\div81=3^2\cdot3^3\div3^4=3\)
`g,`
\(100\cdot1000\cdot10000-10^9=10^2\cdot10^3\cdot10^4-10^9\)
`=`\(10^9-10^9=0\)
`h,`
\(125^4\div5^9=\left(5^3\right)^4\div5^9=5^{12}\div5^9=5^3\)
\(B=\frac{3^9-2^3\cdot3^7+2^{10}\cdot3^2-2^{13}}{3^{10}-2^2\cdot3^7+2^{10}\cdot3^3-2^{12}}\)
\(B=\frac{1-2\cdot1+1\cdot1-2}{3-1\cdot1+1\cdot3-1}\)
\(B=\frac{1-2+1-2}{3-1+3-1}\)
\(B=\frac{-1+\left(-1\right)}{2+2}\)
\(B=\frac{-2}{4}\)
\(\Rightarrow B=\frac{-1}{2}\)
9^3.3^2/3^9.2022 = 1002618.50877
TL
1 474 038
HT