K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2020

Lần sau bạn cho thêm cả dấu ngoặc cho dễ hiểu nhé :v

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) \(\left(b,d\ne0\right)\)

Thay \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) vào \(\frac{a^2-b^2}{ab}\)\(\frac{c^2-d^2}{cd}\) ta có :

\(\left\{{}\begin{matrix}\frac{\left(b.k\right)^2-b^2}{b.k.b}\\\frac{\left(d.k\right)^2-d^2}{d.k.d}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2.k^2-b^2}{b^2.k}\\\frac{d^2.k^2-d^2}{d^2.k}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2\left(k^2-1\right)}{b^2.k}\\\frac{d^2\left(k^2-1\right)}{d^2.k}\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}\frac{k^2-1}{k}\\\frac{k^2-1}{k}\end{matrix}\right.\)(vì b,d khác 0 nên \(b^2,d^2\) khác 0)

=> \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) (vì cùng bằng \(\frac{k^2-1}{k}\))

vậy \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) nếu \(\frac{a}{b}=\frac{c}{d}\)

lâu lắm không làm nên không chắc đâu :v

31 tháng 5 2016

(a² + b²) / (c² + d²) = ab/cd 
<=> (a² + b²)cd = ab(c² + d²) 
<=> a²cd + b²cd = abc² + abd² 
<=> a²cd - abc² - abd² + b²cd = 0 
<=> ac(ad - bc) - bd(ad - bc) = 0 
<=> (ac - bd)(ad - bc) = 0 
<=> ac - bd = 0 hoặc ad - bc = 0 
<=> ac = bd hoặc ad = bc 
<=> a/b = d/c hoặc a/b = c/d (đpcm)

9 tháng 4 2019

sao abd2 chuyển vế mà hk đổi dấu

1 tháng 3 2022

giúp mình với

1 tháng 3 2022

Đặt ab=cd=kab=cd=k

 

Khi đó ta có :

a=bka=bk và c=dkc=dk

Suy ra :

a2b2c2d2=(bk)2b2(dk)2d2a2-b2c2-d2=(bk)2-b2(dk)2-d2

=b2k2b2d2k2d2=b2k2-b2d2k2-d2

=b2.(k21)d2.(k21)=b2.(k2-1)d2.(k2-1)

=b2d2(1)=b2d2(1)

Ta lại có :

21 tháng 7 2016

a)Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

21 tháng 7 2016

\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\)

=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)

Áp dụng dãy tỉ số bằng nhau ta có;

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

=> đpcm

Chúc bạn làm bài tốt

AH
Akai Haruma
Giáo viên
22 tháng 9 2021

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Ta có:

$\frac{ab}{cd}=\frac{b^2t}{d^2t}=\frac{b^2}{d^2}(1)$

Mặt khác:

$\frac{(a-b)^2}{(c-d)^2}=\frac{(bt-b)^2}{(dt-d)^2}=\frac{b^2(t-1)^2}{d^2(t-1)^2}=\frac{b^2}{d^2}(2)$

Từ $(1); (2)\Rightarrow \frac{ab}{cd}=\frac{(a-b)^2}{(c-d)^2}$

16 tháng 11 2016

Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau tao có

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)

Từ (1) và (2) ta có ĐPCM