K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2020

Bài 2:

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}+\frac{1}{d+1}=3\Leftrightarrow\frac{1}{a+1}=1-\frac{1}{b+1}+1-\frac{1}{c+1}+1-\frac{1}{d+1}\)

\(\Leftrightarrow\frac{1}{a+1}=\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}>0\)

Tương tự:

\(\frac{1}{b+1}\ge3\sqrt[3]{\frac{cda}{\left(c+1\right)\left(d+1\right)\left(a+1\right)}}>0\);\(\frac{1}{c+1}\ge3\sqrt[3]{\frac{dab}{\left(d+1\right)\left(a+1\right)\left(b+1\right)}}>0\);

\(\frac{1}{d+1}\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}>0\)

\(\Rightarrow\frac{1}{a+1}.\frac{1}{b+1}.\frac{1}{c+1}.\frac{1}{d+1}\ge3^4\sqrt[3]{\frac{\left(abcd\right)^3}{\left[\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)\right]^3}}\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\frac{abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)

\(\Leftrightarrow abcd\le\frac{1}{81}\)

Dấu "="xảy ra khi \(a=b=c=d?\). Không chắc lắm.

8 tháng 10 2020

Sửa một chút:

Bài 2: Thay dấu "=" bởi lớn hơn hoặc bằng, không có gì cả (nãy nhìn nhầm)

\(\Leftrightarrow\frac{1}{a+1}\ge1-\frac{1}{b+1}+1-\frac{1}{c+1}+1-\frac{1}{d+1}=\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\)

\(\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}>0\left(AM-GM\right)\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2019

Bài 1.

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow \frac{ab+bc+ac}{abc}=0\Rightarrow ab+bc+ac=0\)

\(\Rightarrow ab+bc=-ac\)

Khi đó:

\(D=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{(ab)^3+(bc)^3+(ca)^3}{a^2b^2c^2}=\frac{(ab+bc)^3-3ab.bc(ab+bc)+(ac)^3}{a^2b^2c^2}\)

\(=\frac{(-ac)^3-3ab.bc(-ac)+(ac)^3}{a^2b^2c^2}=\frac{3a^2b^2c^2}{a^2b^2c^2}=3\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2019

Bài 2:

\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow a+b+c=ab+bc+ac=0\)

\(\Rightarrow a^2+b^2+c^2=\frac{(a+b+c)^2-2(ab+bc+ac)}{2}=0\)

\(\Rightarrow a=b=c=0\)

Vô lý do theo đề bài $a,b,c\neq 0$

Bạn xem lại đề.

8 tháng 8 2020

đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))

Sử dụng BĐT Svacxo ta có :

 \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)

bài làm của e : 

Áp dụng BĐT Svacxo ta có :

\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)

Tiếp tục sử dụng Svacxo thì ta được : 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)

Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)

8 tháng 8 2020

Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:

https://olm.vn/hoi-dap/detail/259605114604.html

Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1

chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)

Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)

7 tháng 9 2019

Làm bài này một hồi chắc bay não:v

Bài 1:

a) Áp dụng BĐT AM-GM:

\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = b = c.

b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.

Bài 2:

a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v

b) Theo BĐT Bunhicopxki:

\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)

Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)

Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:

\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)

7 tháng 9 2019

Nói trước là bài 3 em không chắc, tự dưng thấy tại sao lại có đk \(\left|x\right|< 1;\left|y\right|< 1?!?\) Chẳng lẽ lời giải của em sai hay là đề thừa?

27 tháng 9 2020

Theo Svac - xơ có :

\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\)

Khi đó \(P\ge\frac{9}{ab+bc+ca}+\frac{1}{a^2+b^2+c^2}\)

\(=\left(\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{1}{a^2+b^2+c^2}\right)+\frac{7}{ab+bc+ca}\)

\(\ge\frac{9}{a^2+b^2+c^2+2.\left(ab+bc+ca\right)}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}\)

\(=\frac{9}{\left(a+b+c\right)^2}+\frac{21}{\left(a+b+c\right)^2}=\frac{30}{\left(a+b+c\right)^2}=\frac{10}{3}\)

Dấu "=: xảy ra khi \(a=b=c=1\)

Vậy \(P_{min}=\frac{10}{3}\) khi \(a=b=c=1\)

2 tháng 7 2017

Áp dụng bđt Cô-si: \(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=\frac{2}{c}\)

\(\frac{b}{ac}+\frac{c}{ab}\ge2\sqrt{\frac{b}{ac}.\frac{c}{ab}}=\frac{1}{a}\)

\(\frac{c}{ab}+\frac{a}{bc}\ge2\sqrt{\frac{c}{ab}.\frac{a}{bc}}=\frac{1}{b}\)

cộng vế với vế ta được \(2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

=>\(A=\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=2

Vậy minA=3/2 khi a=b=c=2

13 tháng 7 2019

Ctv lá láo gì abj