Tính nhanh
\(1^2-2^2+3^2-4^2+...-2019^2+2020^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1+3+5+7+...+2019+2021)
A=1−3+5−7+......−2019+2021−2023
A=(1−3)+(5−7)+....+(2021−2023)A=(1−3)+(5−7)+....+(2021−2023)
A=−2+(−2)+....+(−2)(506)A=−2+(−2)+....+(−2)(506cặp)
a=−2.506A=−2.506
A=−1012A=−1012
số lượng số hạng của dãy số là
( 2021 - 2 ) : 1 + 1 = 2020
tổng của dãy số là
( 2021 + 2) x 2020 : 2 = 2043230
vậy A = \(\frac{1}{2043230}\)
Ta có : 12 - 22 + 32 - 42 + 52 - 62 + .... + 20192 - 20202
= (1 - 2)(1 + 2) + (3 - 4)(3 + 4) + (5 - 6)(5 + 6) + .... + (2019 - 2020)(2020 + 2019)
= -3 - 7 - 11 - ... - 4039
= - (3 + 7 + 11 + ... + 4039)
= - 1010.(4039 + 3) : 2
= - 1010.2021
= -2041210
\(=\left(2^2-1\right)+\left(4^2-3^2\right)+\left(6^2-5^2\right)+...+\left(2020^2-2019^2\right)=\)
\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(2020-2019\right)\left(2020+2019\right)=\)
\(=3+7+11+....+4039=\frac{1009\left(4039+3\right)}{2}=\)
Ta có :
B = \(\dfrac{1}{2020}+\dfrac{2}{2019}+\dfrac{3}{2018}+...+\dfrac{2019}{2}+\dfrac{2020}{1}\)
B = \(\left(\dfrac{1}{2020}+1\right)+\left(\dfrac{2}{2019}+1\right)+\left(\dfrac{3}{2018}+1\right)+...+\left(\dfrac{2019}{2}+1\right)+1\)
B = \(\dfrac{2021}{2020}+\dfrac{2021}{2019}+\dfrac{2021}{2018}+...+\dfrac{2021}{2}+1\)
B = \(2021\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+...+\dfrac{1}{2}\right)\) (1)
Mà A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\dfrac{A}{B}=\dfrac{1}{2021}\)
Ta có: \(B=\dfrac{1}{2020}+\dfrac{2}{2019}+\dfrac{3}{2018}+...+\dfrac{2019}{2}+\dfrac{2020}{1}\)
\(=\left(\dfrac{1}{2020}+1\right)+\left(\dfrac{2}{2019}+1\right)+\left(\dfrac{3}{2018}+1\right)+...+\left(\dfrac{2019}{2}+1\right)+1\)
\(=\dfrac{2021}{2020}+\dfrac{2021}{2019}+\dfrac{2021}{2018}+...+\dfrac{2021}{2}+\dfrac{2021}{2021}\)
Suy ra: \(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}}{2021\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)}=\dfrac{1}{2021}\)