Tính nhanh: F= (9+1)(9^2+1)(9^4+1)(9^8+1)....(9^32+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(\frac{8}{3}+\frac{17}{9}+\frac{19}{13}+\frac{1}{3}+\frac{7}{13}+\frac{1}{9}\)
\(=\left(\frac{8}{3}+\frac{1}{3}\right)+\left(\frac{17}{9}+\frac{1}{9}\right)+\left(\frac{19}{13}+\frac{7}{13}\right)\)
\(=3+2+2\)
\(=7\)
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)
2 \(\times\) A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)
2 \(\times\) A - A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - (\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\))
A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{16}\) - \(\dfrac{1}{32}\)
A = 1 - \(\dfrac{1}{32}\)
A = \(\dfrac{31}{32}\)
Ta có \(\left(9+1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\frac{1}{8}\left(9-1\right)\left(9+1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\frac{1}{8}\left(9^2-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
cứ như thế
\(=\frac{1}{8}\left(9^{64}-1\right)< 9^{64}-1\)=>đpcm
a)2+4+8+6+7+8+3+9+2+1;
=(9+1)+(2+8)+(4+6)+(7+3)+(2+8)
=10+10+10+10+10
=10x5
=50
b)3+2+4+9+7+1+8+6+3+5
làm tương tự nhé
c)2+3+4+5+6+7+8+9+1+4.
làm tương tự nhé
P/s tham khảo nha
Lời giải:
Sử dụng công thức $(a-1)(a+1)=a^2-1$ ta có:
$8F=(9-1)(9+1)(9^2+1)(9^4+1)(9^8+1)...(9^{32}+1)$
$=(9^2-1)(9^2+1)(9^4+1)(9^8+1)...(9^{32}+1)$
$=(9^4-1)(9^4+1)(9^8+1)...(9^{32}+1)$
$=(9^8-1)(9^8+1)...(9^{32}+1)$
$=(9^{16}-1)...(9^{32}+1)=(9^{32}-1)(9^{32}+1)=9^{64}-1$
$\Rightarrow F=\frac{9^{64}-1}{8}$