Cho △ABC. Gọi M,N,P lần lượt là trung điểm BC,CA,AB. a) vectơBM + vectơCN + vectơAP = vectơ 0. b)vectơAP + vectơAN - vectơAC + vectơ BM = vectơ 0. c)vectơOA + vectơOB + vectơOC = vectơOM + vectơON + vectơOP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết ta có PN là đường trung bình tam giác ABC
\(\Rightarrow\overrightarrow{PN}=\dfrac{1}{2}\overrightarrow{BC}=\overrightarrow{BM}\)
Do đó:
\(\overrightarrow{BM}+\overrightarrow{NC}=\overrightarrow{PN}+\overrightarrow{NC}=\overrightarrow{PC}\)
b.
Theo tính chất trọng tâm: \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}=\dfrac{2}{3}\left(\overrightarrow{AG}+\overrightarrow{GM}\right)\)
\(\Rightarrow\dfrac{1}{3}\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{GM}\Rightarrow2\overrightarrow{MG}=-\overrightarrow{AG}=\overrightarrow{GA}\)
\(\Rightarrow\overrightarrow{GB}+\overrightarrow{GC}+2\overrightarrow{MG}=\overrightarrow{GC}+\overrightarrow{GB}+\overrightarrow{GA}=\overrightarrow{0}\)
Do M là trung điểm BC nên: \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
Tương tự: \(\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}\) ; \(\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)
Cộng vế:
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)
\(=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BA}\right)+\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)+\dfrac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CB}\right)=\overrightarrow{0}\)
b. Từ câu a ta có:
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OM}+\overrightarrow{BO}+\overrightarrow{ON}+\overrightarrow{CO}+\overrightarrow{OP}=\overrightarrow{0}\)
\(\Leftrightarrow-\overrightarrow{OA}+\overrightarrow{OM}-\overrightarrow{OB}+\overrightarrow{ON}-\overrightarrow{OC}+\overrightarrow{OP}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OM}+\overrightarrow{ON}+\overrightarrow{OP}\) (đpcm)
ta có: I là trung điểm của AB
=>\(IA=IB=\dfrac{AB}{2}\)
M là trung điểm của IB
=>\(MI=MB=\dfrac{IB}{2}=\dfrac{AB}{4}\)
AM=AI+IM=1/2AB+1/4AB=3/4AB
=>AM=MB
=>\(\overrightarrow{AM}=3\overrightarrow{MB}\)
=>\(\overrightarrow{AM}-3\overrightarrow{MB}=\overrightarrow{0}\)
=>\(\overrightarrow{AM}+3\overrightarrow{BM}=\overrightarrow{0}\)
=>Chọn C
Do M và N lần lượt là trung điểm của BC và AC nên MN là đường trung bình của tam giác AB.
Đáp án B
a) Ta có:
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)
\(=\overrightarrow{AB}+k\overrightarrow{BC}\)
\(=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)
\(=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)
b) \(\overrightarrow{NP}=\overrightarrow{AP}-\overrightarrow{AN}\)
\(=\dfrac{2}{3}\overrightarrow{AC}-\dfrac{3}{4}\overrightarrow{AB}\)
Để \(AM\perp NP\)
\(\Rightarrow\overrightarrow{AM}.\overrightarrow{NP}=\overrightarrow{0}\)
\(\Rightarrow\left[\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\right]\left(-\dfrac{3}{4}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\dfrac{3\left(k-1\right)}{4}AB^2+\dfrac{2k}{3}AC^2+\dfrac{2\left(1-k\right)}{3}\overrightarrow{AB}.\overrightarrow{AC}-\dfrac{3k}{4}\overrightarrow{AB}.\overrightarrow{AC}=\overrightarrow{0}\)
\(\Leftrightarrow\dfrac{3\left(k-1\right)}{4}AB^2+\dfrac{2k}{3}AB^2+\dfrac{1-k}{3}AB^2-\dfrac{3k}{8}AB^2=0\)
\(\Leftrightarrow AB^2\left[\dfrac{3\left(k-1\right)}{4}+\dfrac{2k}{3}+\dfrac{1-k}{3}-\dfrac{3k}{8}\right]=0\)
\(\Leftrightarrow18\left(k-1\right)+16k+8\left(1-k\right)-9k=0\left(AB>0\right)\)
\(\Leftrightarrow17k=10\)
\(\Leftrightarrow k=\dfrac{10}{17}\)
a) Ta có: \(\overrightarrow{BM}+\overrightarrow{CN}+\overrightarrow{AP}=\frac{\overrightarrow{BC}+\overrightarrow{CA}+\overrightarrow{AB}}{2}=\frac{\overrightarrow{BB}}{2}=\overrightarrow{0}\)
b) Ta có: \(\overrightarrow{AP}+\overrightarrow{AN}-\overrightarrow{AC}+\overrightarrow{BM}=\overrightarrow{AP}+\overrightarrow{CN}+\overrightarrow{BM}=\overrightarrow{0}\)(theo câu a)
c) Ta có: \(\overrightarrow{OA}-\overrightarrow{OP}=\overrightarrow{PA}\); \(\overrightarrow{OB}-\overrightarrow{OM}=\overrightarrow{MB}\);\(\overrightarrow{OC}-\overrightarrow{ON}=\overrightarrow{NC}\)
Cộng vế theo vế ta được \(\left(\overrightarrow{OA}-\overrightarrow{OP}\right)+\left(\overrightarrow{OB}-\overrightarrow{OM}\right)+\left(\overrightarrow{OC}-\overrightarrow{ON}\right)=\overrightarrow{PA}+\overrightarrow{MB}+\overrightarrow{NC}=\frac{\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CB}}{2}=\frac{\overrightarrow{BB}}{2}=\overrightarrow{0}\)
Chuyển vế suy ra điều phải chứng minh
mấy bài trên rất cơ bản chỉ cần dùng quy tắc ba điểm và quy tắc hiệu là có thể giải một cách dễ dàng