Cho tớ hỏi bài này
cho \(\frac{3a^2-b^2}{a^2+b^2}\).tính \(\frac{a}{b}\)
cảm ơn trước nhiều nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt VT là K.
Ta có: \(6a^2+8ab+11b^2=\left(2a+3b\right)^2+2\left(a-b\right)^2\ge\left(2a+3b\right)^2\)
\(\Rightarrow\frac{a^2+3ab+b^2}{\sqrt{6a^2+8ab+11b^2}}\le\frac{a^2+3ab+b^2}{2a+3b}\)
Tiếp tục ta chứng minh: \(\frac{a^2+3ab+b^2}{2a+3b}\le\frac{3a+2b}{5}\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Tương tự ta có: \(\frac{b^2+3bc+c^2}{\sqrt{6b^2+8bc+11c^2}}\le\frac{3b+2c}{5}\);\(\frac{c^2+3ca+a^2}{\sqrt{6c^2+8ca+11a^2}}\le\frac{3c+2a}{5}\)
Cộng từng vế của các bđt trên, ta được:
\(M\le\frac{3b+2c}{5}+\frac{3a+3b}{5}+\frac{3c+2a}{5}=a+b+c\)
Lại có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\le a^2+b^2+c^2+\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\)
hay \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow a+b+c\le3\)
Vậy \(M\le3\)
Đẳng thức xảy ra khi a = b = c = 1
Ta có:
\(a+b+c=1\)
\(\Leftrightarrow\left(a+b+c\right)^2=1\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\)
Mặt khác, ta cũng có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Leftrightarrow ab+bc+ca=0\)
Do đó:
\(a^2+b^2+c^2=1\left(đpcm\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng phân thức là có ngay mà?
\(\frac{a^2}{b+3c}+\frac{b^2}{c+3a}+\frac{c^2}{a+3b}\ge\frac{\left(a+b+c\right)^2}{4\left(a+b+c\right)}=\frac{a+b+c}{4}\)
Ta có: \(a+b=3\left(a-b\right)\Leftrightarrow2a=4b\Leftrightarrow a=2b\) (b khác 0)
Thay vào \(a+b=2\frac{a}{b}\) ta được: \(2b+b=2\cdot\frac{2b}{b}\)
\(\Leftrightarrow3b=4\Rightarrow b=\frac{4}{3}\Leftrightarrow a=\frac{8}{3}\)
Vậy a = 8/3 , b = 4/3
\(\frac{2a+3}{6}=-\frac{1}{b+5}\)
\(\left(2a+3\right)\left(b+5\right)=-6\)
a và b nguyên nên 2a+3 và b+5 là ước của -6
2a+3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
b+5 | -6 | 6 | -3 | 3 | -2 | 2 | -1 | 1 |
a | -1 | -2 | -0,5 | -2,5 | 0 | -3 | 1,5 | -4,5 |
b | -11 | 1 | -8 | -2 | -7 | -3 | -6 | -4 |
Vậy bài toán có 4 đáp số là 4 cặp số:
a=-1 và b=-11
a=-2 và b=1
a=0 và b=-7
a=b=-3
1.
Ta có: \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2ac-1}{2017+c}\)
\(=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)
Đặt \(\hept{\begin{cases}2015+a=x\\2016+b=y\\2017+c=z\end{cases}}\)
\(P=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)
\(=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)
\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}\left(Cosi\right)\)
Dấu "=" <=> x=y=z => \(\hept{\begin{cases}a=673\\b=672\\c=671\end{cases}}\)
Vậy Min P=6 khi a=673; b=672; c=671
Câu 1 thử cộng 3 vào P xem
Rồi áp dụng BDT Cauchy - Schwars : a^2/x + b^2/y + c^2/z ≥(a + b + c)^2/(x + y + z)
\(\frac{3a^2-b^2}{a^2+b^2}=\frac{3\left(\frac{a}{b}\right)^2-1}{\left(\frac{a}{b}\right)^2+1}=\frac{?}{?}\Leftrightarrow\frac{a}{b}=...\)
thiếu đề