6n2 + 12n + 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Chú ý rằng lim 2 a n 3 − 6 n 2 + 2 n 3 + n = 2 a ,
do đó
2 a = 4 ⇔ a = 2 , a 4 − a = 16 − 2 = 14.
gọi Đlà ƯC12n-7va3n+2
suy ra 12n-7 chia hết cho Đ suy ra 4(12n-7) chia hết cho Đ suy ra 48n-28
suy ra 3n+2.....................Đ...........3(3n+2)....................suy ra 9n+6
(48n-28)-(9n+6) chia hết cho Đ
1 chia hết cho Đ và Đ=1
.............................................
Gọi d là ƯC( 4n + 1 , 12n + 7 )
=> 4n + 1 chia hết cho d , 12n + 7 chia hết cho d
=> 3( 4n + 1 ) chia hết cho d
=> 12n + 3 chia hết cho d , 12n + 7 chia hết cho d
=> ( 12n + 7 ) - ( 12n + 3 ) chia hết cho d
=> 4 chia hết cho d
=> d thuộc Ư(4)
=> d thuộc { +1 ; +2 ; +4 }
Mà 4n + 1 là số lẻ
=> d = 1
=> Phân số 4n + 1/12n + 7 là phân số tối giản ( đpcm )
Gọi d là U(4n+1; 12n+7)
\(\Rightarrow\)4n+1 \(⋮\)d ; 12n+7 \(⋮\)d
\(\Rightarrow\)3(4n+1) \(⋮\)d ; 12n+7 \(⋮\)d
\(\Rightarrow\)12n+7 - 3(4n+1) \(⋮\)d
\(\Rightarrow\)4\(⋮\)d\(\Rightarrow\)d\(\in\)U(4) = { \(\pm\)1; \(\pm\)2;\(\pm\)4}
mà 4n+1 \(⋮\)d
\(\Rightarrow\)d \(\ne\)2;4
\(\Rightarrow\)d=1
Vậy ....
Gọi d là UCLN(4n+1;12n+7)
\(\Leftrightarrow\left\{{}\begin{matrix}4n+1⋮d\\12n+7⋮d\end{matrix}\right.\)
\(\Leftrightarrow3\left(4n+1\right)-12n-7⋮d\)
\(\Leftrightarrow12n+3-12n-7⋮d\)
\(\Leftrightarrow-4⋮d\)
\(\Leftrightarrow d\inƯ\left(-4\right)\)
\(\Leftrightarrow d\in\left\{1;-1;2;-2;4;-4\right\}\)(1)
Ta có: 4n+1 và 12n+7 là hai số lẻ
nên ƯCLN(4n+1;12n+7) là số lẻ
hay d là số lẻ
\(\Leftrightarrow d⋮2̸\)(2)
Từ (1) và (2) suy ra \(d\in\left\{1;-1\right\}\)
hay d=1
\(\LeftrightarrowƯCLN\left(4n+1;12n+7\right)=1\)
\(\Leftrightarrow\dfrac{4n+1}{12n+7}\) là phân số tối giản(đpcm)
Gọi d = ƯCLN(12n + 5; 18n + 7)
⇒ (12n + 5) ⋮ d và (18n + 7) ⋮ d
*) (12n + 5) ⋮ d
⇒ 3.(12n + 5) ⋮ d
⇒ (36n + 15) ⋮ d (1)
*) (18n + 7) ⋮ d
⇒ 2(18n + 7) ⋮ d
⇒ (36n + 14) ⋮ d (2)
Từ (1) và (2) suy ra:
(36n + 15 - 36n - 14) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy 12n + 5 và 18n + 7 là hai số nguyên tố cùng nhau