1. Tìm tất cả các số thực x thỏa mãn
\(\left|x+\frac{1}{10}\right|+\left|x+\frac{2}{10}\right|+...+\left|x+\frac{9}{10}\right|=10x\)
2. Chứng minh rằng :
a) \(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^n}< \frac{1}{3}\) với mọi số nguyên dương n
b)\(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^n}< \frac{4}{9}\) với mọi số nguyên dương n
3. Cho các số thực x,y,z thỏa mãn x+y+z = \(\frac{x}{y+z+3}=\frac{y}{z+x+2}+\frac{z}{z+y-5}\)
4. Cho các số thực dương a,b,c thỏa mãn điều kiện \(\frac{a}{b+3c}=\frac{b}{c+3a}=\frac{c}{a+3b}\) . Chứng minh rằng a=b=c
5. Cho các số thực a,b,c thỏa mãn \(\frac{a}{b+c-a}=\frac{b}{c+a-b}=\frac{c}{a+b-c}\) (giả sử các mẫu số đều khác 0). Tính giá trị biểu thức
P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
1.
\(10x=|x+\dfrac{1}{10}|+|x+\dfrac{2}{10}|+...+|x+\dfrac{9}{10}| \ge 0\)
\(\Rightarrow x\ge0\)
\(pt\Leftrightarrow x+\frac{1}{10}+x+\frac{2}{10}+...+x+\frac{9}{10}=10x\)
\(\Leftrightarrow x=\frac{1}{10}+\frac{2}{10}+...+\frac{9}{10}=\frac{9}{2}\)
\(\Rightarrow x=\frac{9}{2}\)
4.
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{b+3c}=\frac{b}{c+3a}=\frac{c}{a+3b}=\frac{a+b+c}{4\left(a+b+c\right)}=\frac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}4a=b+3c\left(1\right)\\4b=c+3a\left(2\right)\\4c=a+3b\left(3\right)\end{matrix}\right.\)
Từ \(\left(1\right);\left(2\right)\Rightarrow4a=b+3\left(4b-3a\right)\)
\(\Rightarrow12a=12b\Rightarrow a=b\left(4\right)\)
Từ \(\left(1\right);\left(3\right)\Rightarrow4c=a+3\left(4a-3c\right)\)
\(\Rightarrow12a=12c\Rightarrow a=c\left(5\right)\)
Từ \(\left(4\right);\left(5\right)\Rightarrow a=b=c\left(đpcm\right)\)