K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 10 2020

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)

\(\Rightarrow a=b=c=\frac{2019}{3}\)

8 tháng 11 2021

\(\dfrac{2019}{3}\)=673

6 tháng 8 2019

Câu hỏi của Thiên Ân - Toán lớp 8 - Học toán với OnlineMath

tương tự như câu này đều thay số thôi

AH
Akai Haruma
Giáo viên
14 tháng 11 2021

Lời giải:
$a^2+b^2+c^2=ab+bc+ac$

$\Leftrightarrow 2a^2+2b^2+2c^2=2ab+2bc+2ac$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Vì $(a-b)^2\geq 0; (b-c)^2\geq 0; (c-a)^2\geq 0$ nên để tổng của chúng $=0$ thì $(a-b)^2=(b-c)^2=(c-a)^2=0$

$\Rightarrow a=b=c$

Kết hợp $a+b+c=2019$

$\Rightarrow a=b=c=\frac{2019}{3}=673$

9 tháng 5 2018

hình như bạn ghi sai ồi 

30 tháng 6 2020

\(S=\sqrt{a^2-ab+b^2}\ge\frac{1}{2}\left(a+b\right)\Leftrightarrow4a^2-4ab+4b^2\ge a^2+2ab+b^2\Leftrightarrow3\left(a-b\right)^2\ge0\)

do đó: \(S\ge\frac{1}{2}a+\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}c=2019\)

26 tháng 5 2019

Ta có:  \(a^2+2019=a^2+ab+bc+ca=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

Tương tự ta có : \(b^2+2019=\left(a+b\right)\left(b+c\right)\)

                           \(c^2+2019=\left(a+c\right)\left(b+c\right)\)

\(\Rightarrow\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ac}{\left(a+b\right)\left(b+c\right)}+\frac{c^2-ab}{\left(a+c\right)\left(b+c\right)}\)\(=\frac{\left(a^2-bc\right)\left(b+c\right)+\left(b^2-ac\right)\left(a+c\right)+\left(c^2-ab\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)\(=\frac{a^2b-b^2c+a^2c-bc^2+ab^2-a^2c+b^2c-ac^2+ac^2+bc^2-a^2b-ab^2}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=0\)\(\Rightarrow dpcm\)

26 tháng 5 2019

\(\text{Thay }ab+bc+ac=2019\text{ vào biểu thức trên, ta có: }\)

\(\frac{a^2-bc}{a^2+ab+bc+ac}+\frac{b^2-ac}{b^2+ab+bc+ac}+\frac{c^2-ab}{c^2+ab+bc+ac}\)

\(=\frac{\left(a^2-bc\right).\left(b+c\right)}{\left(a+c\right).\left(a+b\right).\left(b+c\right)}+\frac{\left(b^2-ac\right).\left(a+c\right)}{\left(a+b\right).\left(b+c\right).\left(a+c\right)}+\frac{\left(c^2-ab\right).\left(a+b\right)}{\left(a+c\right).\left(b+c\right).\left(a+b\right)}\)

\(=\frac{a^2b+a^2c-b^2c-bc^2+b^2a+b^2c-a^2c-ac^2+c^2a+c^2b-a^2b-ab^2}{\left(a+c\right).\left(a+b\right).\left(b+c\right)}=0\)

Vậy...

20 tháng 10 2019

<=> \(2a^2+2b^2+2c^2=2ab+2bc+2ca< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0< =>\)

a=b=c => 32020 = 3.a2019 <=> 32019 = a2019 => a=b=c=3

A= 12017 + 02018 + (-1)2019 = 0

15 tháng 1 2021

hoc24.vn

Khác số chút thoyy.

15 tháng 1 2021

Cảm ơn bạn nhiều !

5 tháng 7 2023

1) ab=2 (I); bc=3 (II); ca=54 (III)

Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 324 ⇒ abc = ±18

(II) ⇒ a= ±6 ; (I) ⇒ b= ±1/3 ; (II) ⇒ c= ±9

2) ab=5/3 (I); bc=4/5 (II); ca=3/4 (III)

Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 1 ⇒ abc = ±1

(II) ⇒ a= ±5/4 ; (I) ⇒ b= ±4/3 ; (II) ⇒ c= ±3/5

3) a(a+b+c)= -12 (I)

    b(a+b+c)= 18 (II)

    c(a+b+c)= 30 (III)

Lấy (I)+(II)+(III) ⇒ (a+b+c)2 = 36 ⇒ a+b+c = ±6

TH1 : a=6 ⇒ a= -12/6 = -2 ; b= 18/6 = 3 ; c= 30/6 = 5

TH2 : a=-6 ⇒ a= -12/-6 = 2 ; b= 18/-6 = -3 ; c= 30/-6 = -5