Chứng minh
2n > 2n + 1 ∀n>2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n⋮5\Rightarrowđpcm\)
22n(22n+1-1)-1
\(=2^{4n+1}-2^{2n}-1=2.2^{4n}-2^{2n}-1\)
\(=2\left(2^{2n}\right)^2-2^{2n}-1=A\)
Đặt \(2^{2n}=t\)
\(\Rightarrow A=2t^2-t-1=\left(2t+1\right)\left(t-1\right)\)
\(=\left(2.2^{2n}+1\right)\left(2^{2n}-1\right)\)
\(=\left(2^{2n+1}+1\right)\left(2^{2n}-1\right)=\left(2+1\right)\left(2^{2n}-2^{2n-1}+...+1\right)\left(2+1\right)\left(2^{2n-1}+...-1\right)\)
\(=9.B\)
Vậy \(A⋮9\)
Vì 2n+1 là số nguyên tố với n > 2
=> ta có: 2n+1-1 = 2n => chia hết cho 2 => 2n+1 là nguyên tố thì 2n-1 là hợp số (đpcm)
a)m>n công vế vs 2
=> m+2>n+2
b) nhân cả 2 vế m>n cói -2, vì -2 là âm nên dấu bdt đổi chiều: -2m<-2n
c)m>n
=> 2m>2n
=> 2m-5>2n-5
d) m>n
=> -3m<-3n
=>4-3m<4-3n
a) Ta có: m > n => m + 2 > n + 2 (cộng hai vế với 2)
b) Ta có: m > n => -2m < -2n ( nhân hai vế với -2 và đổi chiều BĐT)
c) Ta có: m > n => 2m > 2n => 2m – 5 > 2n – 5
(nhân hai vế với 2, rồi cùng cộng vào hai vế với -5)
d) Ta có m > n => -3m < -3n ⇒ 4 – 3m < 4 – 3n
(nhân hai vế với -3 và đổi chiều BĐT, rồi cùng cộng vào hai vế với 4)
- Với \(n=3\Rightarrow2^3>2.3+1\) (đúng)
Giả sử BĐT cũng đúng với \(n=k\ge3\) nghĩa là \(2^k>2k+1\)
Ta cần chứng minh nó cũng đúng với \(n=k+1\)
Hay \(2^{k+1}>2\left(k+1\right)+1\Leftrightarrow2^{k+1}>2k+3\)
Thật vậy, ta có:
\(2^{k+1}=2.2^k>2.\left(2k+1\right)=4k+2\)
\(\Leftrightarrow2^{k+1}>2k+3+\left(2k-1\right)>2k+3\) ; \(\forall k\ge3\) (đpcm)