K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 10 2020

- Với \(n=3\Rightarrow2^3>2.3+1\) (đúng)

Giả sử BĐT cũng đúng với \(n=k\ge3\) nghĩa là \(2^k>2k+1\)

Ta cần chứng minh nó cũng đúng với \(n=k+1\)

Hay \(2^{k+1}>2\left(k+1\right)+1\Leftrightarrow2^{k+1}>2k+3\)

Thật vậy, ta có:

\(2^{k+1}=2.2^k>2.\left(2k+1\right)=4k+2\)

\(\Leftrightarrow2^{k+1}>2k+3+\left(2k-1\right)>2k+3\) ; \(\forall k\ge3\) (đpcm)

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

5 tháng 6 2017

\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n⋮5\Rightarrowđpcm\)

5 tháng 6 2017

\(2n^2 - 3n - 2n^2 - 2n = - 3n - 2n = - 5n\)

\(-5⋮5\) =>\(-5n⋮5\)

hay \(2n^2-3n-2n^2-2n⋮5\left(đpcm\right)\)

15 tháng 4 2020

22n(22n+1-1)-1

\(=2^{4n+1}-2^{2n}-1=2.2^{4n}-2^{2n}-1\)

\(=2\left(2^{2n}\right)^2-2^{2n}-1=A\)

Đặt \(2^{2n}=t\)

\(\Rightarrow A=2t^2-t-1=\left(2t+1\right)\left(t-1\right)\)

\(=\left(2.2^{2n}+1\right)\left(2^{2n}-1\right)\)

\(=\left(2^{2n+1}+1\right)\left(2^{2n}-1\right)=\left(2+1\right)\left(2^{2n}-2^{2n-1}+...+1\right)\left(2+1\right)\left(2^{2n-1}+...-1\right)\)

\(=9.B\)

Vậy \(A⋮9\)

15 tháng 4 2020

Cảm ơn bạn nhiều nhee

8 tháng 3 2017

Vì 2n+1 là số nguyên tố với n > 2

=> ta có: 2n+1-1 = 2n => chia hết cho 2 => 2n+1 là nguyên tố thì 2n-1 là hợp số (đpcm)

29 tháng 11 2021
Hãy trả lời câu hỏi này Năm nay tuổi mẹ gấp 5 lần tuổi con . Tính tuổi của mỗi người,biết rằng mẹ hơn con 32 tuổi
29 tháng 4 2018

Vì m>n vậy 2m>2n và 2m+1>2n-5

29 tháng 4 2018

còn giải thích sao bn

6 tháng 4 2016

Đương nhiên là vậy rồi, chứng minh làm gì nữa

mk ko bít làm sorry! ~_~

53466

17 tháng 6 2016

a)m>n công vế vs 2

=> m+2>n+2

b)  nhân cả 2 vế m>n cói -2, vì -2 là âm nên dấu bdt đổi chiều: -2m<-2n

c)m>n

=> 2m>2n

=> 2m-5>2n-5

d) m>n

=> -3m<-3n

=>4-3m<4-3n

17 tháng 6 2016

a) Ta có: m > n => m + 2 > n + 2 (cộng hai vế với 2)
b) Ta có: m > n => -2m < -2n ( nhân hai vế với -2 và đổi chiều BĐT)
c) Ta có: m > n => 2m > 2n => 2m – 5 > 2n – 5
(nhân hai vế với 2, rồi cùng cộng vào hai vế với -5)
d) Ta có m > n => -3m < -3n ⇒ 4 – 3m < 4 – 3n
(nhân hai vế với -3 và đổi chiều BĐT, rồi cùng cộng vào hai vế với 4)