K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Xét tam giác ABC cân tại A có

I là trung điểm của BC

\( \Rightarrow AI \bot BC\)

Xét tam giác ACD cân tại D có

I là trung điểm của BC

\( \Rightarrow DI \bot BC\)

Ta có \(AI \bot BC,DI \bot BC \Rightarrow BC \bot \left( {AID} \right)\)

b) \(BC \bot \left( {AID} \right);BC \subset \left( {BCD} \right) \Rightarrow \left( {BCD} \right) \bot \left( {AID} \right)\)

\(\left( {BCD} \right) \cap \left( {AID} \right) = DI\)

Trong (AID) có \(AH \bot DI\)

\( \Rightarrow AH \bot \left( {BCD} \right)\)

c) Ta có \(BC \bot \left( {AID} \right);IJ \subset \left( {AID} \right) \Rightarrow BC \bot IJ\)

Mà \(IJ \bot AD\)

Do đó IJ là đường vuông góc chung của AD và BC.

28 tháng 3 2022

Đáp án:

a) △ABC∽△HAC△ABC∽△HAC

b) EC.AC=DC.BCEC.AC=DC.BC

c) △BEC∽△ADC△BEC∽△ADC△ABE△ABE vuông cân tại A

Giải thích các bước giải:

a)

Xét △ABC△ABC và △HAC△HAC:

ˆBAC=ˆAHC(=90o)BAC^=AHC^(=90o)

ˆCC^: chung

→△ABC∽△HAC→△ABC∽△HAC (g.g)

b)

Xét △DEC△DEC và △ABC△ABC:

ˆEDC=ˆBAC(=90o)EDC^=BAC^(=90o)

ˆCC^: chung

→△DEC∽△ABC→△DEC∽△ABC (g.g)

→DCEC=ACBC→EC.AC=DC.BC→DCEC=ACBC→EC.AC=DC.BC

c)

Xét △BEC△BEC và △ADC△ADC:

DCEC=ACBCDCEC=ACBC (cmt)

ˆCC^: chung

→△BEC∽△ADC→△BEC∽△ADC (c.g.c)

Ta có: AH⊥BC,ED⊥BCAH⊥BC,ED⊥BC (gt)

→AH//ED→AH//ED

△AHC△AHC có AH//EDAH//ED (cmt)

→AEAC=HDHC→AEAC=HDHC (định lý Talet)

Mà HD=HAHD=HA (gt)

→AEAC=HAHC→AEAC=HAHC

Lại có: △ABC∽△HAC△ABC∽△HAC (cmt)

→ABAC=HAHC→ABAC=HAHC

→AEAC=ABAC→AE=AB→AEAC=ABAC→AE=AB

→△ABE→△ABE cân tại A

Có: AB⊥AE(AB⊥AC)AB⊥AE(AB⊥AC)

→△ABE→△ABE vuông cân tại A

image 

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

Do đó: ΔABC\(\sim\)ΔHAC

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

DO đó: ΔCDE\(\sim\)ΔCAB

Suy ra: CD/CA=CE/CB

hay \(CD\cdot CB=CA\cdot CE\)

25 tháng 3 2022

đề có vấn đề đấy bạn, ABC cân A thì AB =AC =12 cm chứ sao AC =16cm đc nhỉ

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

DO đó: ΔHBA∼ΔABC

b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

10 tháng 9 2021

các bạn giúp mik với!!!!

11 tháng 4 2019

A B C E F

Xét tam giác ABC cân tại A có đường cao AH 

=> AH là đường phân giác 

=>  \(\widehat{BAH}=\widehat{CAH}\)(1)

Ta có:  \(\widehat{EAB}=\widehat{FAC}=90^o\)(2)

Mặt khác:  \(\widehat{OAH}=\widehat{OAE}+\widehat{EAB}+\widehat{BAH}=\widehat{OAF}+\widehat{FAC}+\widehat{CAH}\)(3)

Từ (1), (2), (3) => \(\widehat{OAE}=\widehat{OAF}\)

Ta lại có Tam giác EAB cân tại A, BAC cân tại A, CAF cân tại A

=> AE=AB=AC=AF

Xét tam giác EOA và tam giác FOA có:

AF=AE

\(\widehat{OAE}=\widehat{OAF}\)

OA chung

=> \(\Delta EOA=\Delta FOA\)

=> OE=OF