CMR : n4-10n2+9 chia hết cho 384 với mọi n lẻ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=n^4-10n^2+9\)
\(n^4-n^2-9\left(n^2-1\right)=n.n\left(n-1\right)\left(n+1\right)-9\left(n^2-1\right)\)
Do \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 3
\(\Rightarrow A⋮3\)
Lại có: \(A=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Do n lẻ, đặt \(n=2k+1\)
\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)
\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k-1\right)\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên liên tiếp nên luôn chia hết cho 8
\(\Rightarrow A⋮\left(16.8\right)\Rightarrow A⋮128\)
Mà 3 và 128 nguyên tố cùng nhau \(\Rightarrow A⋮\left(128.3\right)\Rightarrow A⋮384\)
\(n^4-10n^2+9\)
\(=\)\(\left(n^4-n^2\right)-\left(9n^2-9\right)\)
\(=\)\(n^2\left(n^2-1\right)-9\left(n^2-1\right)\)
\(=\)\(\left(n^2-1\right)\left(n^2-9\right)\)
\(=\)\(\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Mà n lẻ nên n có dạng \(2k+1\) \(\left(k\inℤ\right)\)
\(=\)\(\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)
\(=\)\(2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)
\(=\)\(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)
\(=\)\(15k\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)
Lại có :
\(16k\left(k+1\right)\left(k-2\right)\left(k+2\right)⋮16\)
\(15\left(k-1\right)k\left(k+1\right)\left(k+2\right)⋮8,⋮3\)
\(\Rightarrow\)\(15\left(k-1\right)k\left(k+1\right)\left(k+2\right)⋮384\) ( đpcm )
Vậy \(n^4-10n^2+9⋮384\) với mọi n là số nguyên lẻ
Chúc bạn học tốt ~
Lời giải:
Gọi biểu thức là $A$. Đặt $n=2k+1$ với $k$ nguyên.
$A=n^8(n^4-1)-(n^4-1)=(n^4-1)(n^8-1)$
$=(n^4-1)(n^4-1)(n^4+1)$
$=(n-1)^2(n+1)^2(n^2+1)^2(n^4+1)$
$=(2k)^2(2k+2)^2(4k^2+4k+2)^2(n^4+1)$
$=64[k(k+1)]^2(2k^2+2k+1)^2(n^4+1)$
Vì $k(k+1)$ là tích 2 số nguyên liên tiếp nên hiển nhiên chia hết cho 2
$\Rightarrow [k(k+1)]^2\vdots 4$
Với $n$ lẻ thì hiển nhiên $n^4+1\vdots 2$
$\Rightarrow A\vdots 64.4.2=512$ (đpcm)
Lời giải:
Vì $n$ là số nguyên lẻ nên đặt \(n=2k+1(k\in\mathbb{Z})\)
Ta có:
\(A=n^4-10n^2+9=n^4-n^2-9n^2+9\)
\(=n^2(n^2-1)-9(n^2-1)=(n^2-9)(n^2-1)\)
\(=(n-3)(n+3)(n-1)(n+1)\)
\(=(2k+1-3)(2k+1+3)(2k+1-1)(2k+1+1)\)
\(=(2k-2)(2k+4)(2k)(2k+2)\)
\(=16(k-1)k(k+1)(k+2)\)
Vì $k-1,k,k+1,k+2$ là 4 số nguyên liên tiếp nên chắc chắn sẽ có 2 số chẵn mà trong 2 số chẵn đó có 1 số chia hết cho $4$
\(\Rightarrow (k-1)k(k+1)(k+2)\vdots (2.4)\)
\(\Rightarrow (k-1)k(k+1)(k+2)\vdots 8\)
Cũng thấy rằng \((k-1)k(k+1)\) là tích 3 số nguyên liên tiếp nên \((k-1)k(k+1)\vdots 3\)
Vậy \((k-1)k(k+1)(k+2)\vdots 24\)
\(\Rightarrow A=16(k-1)k(k+1)(k+2)\vdots (16.24=384)\)
Ta có đpcm.
CMR:
a) n5 - n chia hết cho 30 với n thuộc N
b) n4-10n2 + 9 chia hết cho 384 với mọi n lẻ, n thuộc Z
a) Áp dụng định lí nhỏ Fermat vào biểu thức \(n^5-n\), ta được:
\(n^5-n⋮5\)(vì 5 là số nguyên tố)
Ta có: \(n^5-n\)
\(=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)\)
Vì n-1 và n là hai số nguyên liên tiếp nên \(\left(n-1\right)\cdot n⋮2\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)
Vì n-1; n và n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)
mà \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)(cmt)
và ƯCLN(2;3)=1
nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\cdot3\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)⋮6\)
hay \(n^5-n⋮6\)
mà \(n^5-n⋮5\)(cmt)
và ƯCLN(6;5)=1
nên \(n^5-n⋮6\cdot5\)
hay \(n^5-n⋮30\)(đpcm)
Thống nhất biểu thức là $A=n^4+5n^2+9$ bạn nhé, không phải $x$.
Lời giải:
Giả sử $n^4+5n^2+9\vdots 121$
$\Rightarrow n^4+5n^2+9\vdots 11$
$\Rightarrow n^4+5n^2-11n^2+9\vdots 11$
$\Rightarrow n^4-6n^2+9\vdots 11$
$\Rightarrow (n^2-3)^2\vdots 11$
$\Rightarrow n^2-3\vdots 11$
Đặt $n^2-3=11k$ với $k$ nguyên
Khi đó: $n^4+5n^2+9=(11k+3)^2+5(11k+3)+9=121k^2+121k+33\not\vdots 121$ (trái với giả sử)
Vậy giả sử là sai. Tức là với mọi số nguyên $n$ thì $n^4+5n^2+9$ không chia hết cho $121$
Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath
\(n^4-10n^2+9=\left(n^4-9n^2\right)-\left(n^2-9\right)\)
\(=n^2.\left(n^2-9\right)-\left(n^2-9\right)=\left(n^2-1\right)\left(n^2-9\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Vì n lẻ \(\Rightarrow n=2k+1\)( \(k\inℤ\))
\(\Rightarrow n^4-10n^2+9=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)
\(=2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\)
\(=16.k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)
\(=16.\left(k-1\right).k.\left(k+1\right).\left(k+2\right)\)
Vì \(k-1\); \(k\); \(k+1\); \(k+2\)là 4 số nguyên liên tiếp
\(\Rightarrow\left(k-1\right).k.\left(k+1\right).\left(k+2\right)⋮24\)
\(\Rightarrow16.\left(k-1\right).k.\left(k+1\right).\left(k+2\right)⋮384\)
hay \(n^4-10n^2+9⋮384\)( đpcm )