cho hai hình bình hành ABCD và ABEF không nằm trên cùng một mặt phẳng.Gọi I,J là trung điểm của AC và BF .Chứng Minh:
a)C,D,E,F đồng phẳng
b)IJ//DF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giao tuyến của các cặp mặt phẳng
*Giao tuyến của (AEC) và (BFD)
• Trong hình thang ABCD, AC cắt DB tại G, ta có:
Tương tự, AE cắt BF tại H,
Ta có :
⇒ H ∈ (AEC) ∩ (BFD).
Vậy GH = (AEC) ∩ (BFD)
*Giao tuyến của (BCE) và (ADF)
Trong hình thang ABCD, BC cắt AD tại I, ta có: I ∈ (BCE) ∩ (ADF)
Trong hình thang ABEF, BE cắt AF tại K, ta có: K ∈ (BCE) ∩ (ADF)
Vậy IK = (BCE) ∩ (ADF)
b) Giao điểm của AM với mp(BCE)
Trong mp(ADF), AM cắt IK tại N, ta có:
N ∈ IK ⊂ (BCE)
Vậy N = AM ∩ (BCE).
c) Giả sử AC cắt BF.
⇒ Qua AC và BF xác định duy nhất 1 mặt phẳng.
Mà qua A và BF có duy nhất mặt phẳng (ABEF)
⇒ AC ⊂ (ABEF)
⇒ C ∈ (ABEF) (Vô lý).
Vậy AC và BF không cắt nhau.
MN // DE nên DM, NE cắt nhau tại điểm I và
Lại có
Mặt khác:
Đáp án A.
Tham khảo hình vẽ:
a) \(O\) là trung điểm của \(B{\rm{D}}\) (theo tính chất hình bình hành)
\(O'\) là trung điểm của \(BF\) (theo tính chất hình bình hành)
\( \Rightarrow OO'\) là đường trung bình của tam giác \(B{\rm{D}}F\)
\(\left. \begin{array}{l} \Rightarrow OO'\parallel DF\\DF \subset \left( {C{\rm{DFE}}} \right)\end{array} \right\} \Rightarrow OO'\parallel \left( {C{\rm{DFE}}} \right)\)
Ta có:
\(\left. \begin{array}{l}OO'\parallel DF\\DF \subset \left( {A{\rm{DF}}} \right)\end{array} \right\} \Rightarrow OO'\parallel \left( {A{\rm{DF}}} \right)\)
\(O\) là trung điểm của \(AC\) (theo tính chất hình bình hành)
\(O'\) là trung điểm của \(A{\rm{E}}\) (theo tính chất hình bình hành)
\( \Rightarrow OO'\) là đường trung bình của tam giác \(AC{\rm{E}}\)
\(\left. \begin{array}{l} \Rightarrow OO'\parallel CE\\CE \subset \left( {BCE} \right)\end{array} \right\} \Rightarrow OO'\parallel \left( {BC{\rm{E}}} \right)\)
b) \(M\) là trung điểm của \(AF\) (theo tính chất hình bình hành)
\(N\) là trung điểm của \(BE\) (theo tính chất hình bình hành)
\( \Rightarrow MN\) là đường trung bình của hình bình hành \(ABEF\)
\(\left. \begin{array}{l} \Rightarrow MN\parallel EF\parallel AB\\EF \subset \left( {C{\rm{D}}F{\rm{E}}} \right)\end{array} \right\} \Rightarrow MN\parallel \left( {C{\rm{D}}F{\rm{E}}} \right)\)
Ta có:
\(\left. \begin{array}{l}O \in \left( {OMN} \right) \cap \left( {ABC{\rm{D}}} \right)\\MN\parallel AB\\MN \subset \left( {OMN} \right)\\AB \subset \left( {ABC{\rm{D}}} \right)\end{array} \right\}\)
\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {OMN} \right)\) và \(\left( {ABCD} \right)\) là đường thẳng \(d\) đi qua \(O\), song song với \(MN\) và \(AB\).
a) Trong (ABCD) : AC ∩ BD = I, Trong ( ABEF): AE ∩ BF = J
=> (ACE) ∩ (BDF) = IJ
Tương tự (BCE) ∩ ( ADF) = GH
b) Trong (AGH): AM ∩ GH = N, chứng minh N AM và N (BCE)
c) Chứng minh bằng phương pháp phản chứng. Giả sử AC và BE cùng nằm trong một mặt phẳng, lập luận dẫn tới (ABCD) ≡ (ABEF), trái với giả thiết
a) Do các tứ giác ABCD và ABEF là các hình bình hành
=> O là trung điểm của AC và BD
và O’ là trung điểm của AE và BF. (tính chất hình bình hành).
+ ΔBFD có OO’ là đường trung bình nên OO’ // DF
mà DF ⊂ (ADF)
⇒ OO' // (ADF)
+ ΔAEC có OO’ là đường trung bình nên OO’ // EC
mà EC ⊂ (BCE)
⇒ OO’ // (BCE).
b)
Ta thấy mp(CEF) chính là mp(CEFD).
Gọi I là trung điểm của AB:
+ M là trọng tâm ΔABD
⇒ IM/ ID = 1/3.
+ N là trọng tâm ΔABE
⇒ IN/IE = 1/3.
+ ΔIDE có IM/ID = IN/IE = 1/3
⇒ MN // DE mà ED ⊂ (CEFD)
nên MN // (CEFD) hay MN // (CEF).