Rút gọn \(\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\cdot\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MTC: (x+y)(x+1)(1-y)
\(=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}=\frac{\left(x+y\right)\left(1+x\right)\left(1-y\right)\left(x-y+xy\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}\)
\(=x-y+xy\)
Với \(x\ne-1;x\ne-y;y\ne1\)thì giá trị biểu thức được xác định
ĐK: \(\hept{\begin{cases}x^2+4x+4\ne0\\4-x^2\ne0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\ne0\\\left(2-x\right)\left(2+x\right)\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}}\)
\(P=\frac{x^3-4x}{x^2+4}.\left(\frac{1}{x^2+4x+4}+\frac{1}{4-x^2}\right)\)
\(=\frac{x\left(x^2-4\right)}{x^2+4}.\left(\frac{1}{\left(x+2\right)^2}+\frac{-1}{\left(x-2\right)\left(x+2\right)}\right)\)
\(=\frac{x\left(x^2-4\right)}{x^2+4}.\left(\frac{x-2-\left(x+2\right)}{\left(x+2\right)^2\left(x-2\right)}\right)\)
\(=\frac{x\left(x-2\right)\left(x+2\right)}{x^2+4}.\frac{-4}{\left(x+2\right)^2\left(x-2\right)}=\frac{-4x}{\left(x^2+4\right)\left(x+2\right)}\)
I don't now
...............
.................
\(=\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}\)
1/ (x+1)(x+2) +1/ (x+2)(x+3) +1/ (x+3)(x+4) +1/ (x+4)(x+5)
=1/x+1 -1/x+2 +1/x+2 -1/x+3 +1/x+3 -1/x+4 +1/x+4 -1/x+5
=1/x+1 -1/x+5
=4/(x+1)(x+5)
\(\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\times\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
ĐK : ...
\(=\left(\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^4-x^2+1\right)\left(x^2+1\right)}-\frac{x^4-x^2+1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\right)\times\left(x^4+\frac{\left(1-x^2\right)\left(1+x^2\right)}{\left(1+x^2\right)}\right)\)
\(=\left(\frac{x^4-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}-\frac{x^4-x^2+1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\right)\times\left(x^4+1-x^2\right)\)
\(=\left(\frac{x^4-1-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\right)\times\left(x^4-x^2+1\right)\)
\(=\frac{x^2-2\left(x^4-x^2+1\right)}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\)
\(=\frac{x^2-2}{x^2+1}\)
Mình sửa dòng 5 một chút nhé
\(=\frac{\left(x^2-2\right)\left(x^4-x^2+1\right)}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\)( như kia dễ bị nhầm )