K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2020

Ta có :\(\frac{x+4}{2018}+\frac{x+3}{2019}=\frac{x+2}{2020}+\frac{x+1}{2021}\)

=> \(\left(\frac{x+4}{2018}+1\right)+\left(\frac{x+3}{2019}+1\right)=\left(\frac{x+2}{2020}+1\right)+\left(\frac{x+1}{2021}+1\right)\)

=> \(\frac{x+2022}{2018}+\frac{x+2022}{2019}=\frac{x+2022}{2020}+\frac{x+2022}{2021}\)

=> \(\frac{x+2022}{2018}+\frac{x+2022}{2019}-\frac{x+2022}{2020}-\frac{x+2022}{2021}=0\)

=> \(\left(x+2022\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\)

Vì \(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\ne0\)

=> x + 2022 = 0

=> x = -2022

Vậy x = -2022

1 tháng 10 2020

\(\frac{x+4}{2018}+\frac{x+3}{2019}=\frac{x+2}{2020}+\frac{x+1}{2021}\)  

\(\frac{x+4}{2018}+1+\frac{x+3}{2019}+1=\frac{x+2}{2020}+1+\frac{x+1}{2021}+1\) 

\(\frac{x+4}{2018}+\frac{2018}{2018}+\frac{x+3}{2019}+\frac{2019}{2019}=\frac{x+2}{2020}+\frac{2020}{2020}+\frac{x+1}{2021}+\frac{2021}{2021}\)   

\(\frac{x+2022}{2018}+\frac{x+2022}{2019}=\frac{x+2022}{2020}+\frac{x+2022}{2021}\)   

\(\frac{x+2022}{2018}+\frac{x+2022}{2019}-\frac{x+2022}{2020}-\frac{x+2022}{2021}=0\)   

\(\left(x+2022\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\)   

\(x+2022=0\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\ne0\right)\)   

\(x=0-2022\) 

\(x=-2022\)

15 tháng 5 2021

\(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}=\dfrac{x+3}{2019}+\dfrac{x+4}{2018}\)

=>\(\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)

=>\(\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)

=> (x+2022)(\(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2019}-\dfrac{1}{2018}\))=0

=>x+2022=0

=> x=-2022

1 tháng 1 2018

\(\dfrac{x-4}{2021}+\dfrac{x-3}{2020}=\dfrac{x-2}{2019}+\dfrac{x-1}{2018}\)

\(\dfrac{x-4}{2021}+\dfrac{x-3}{2020}-\dfrac{x-2}{2019}-\dfrac{x-1}{2018}=0\)

\(\left(1+\dfrac{x-4}{2021}\right)+\left(1+\dfrac{x-3}{2020}\right)-\left(1+\dfrac{x-2}{2019}\right)-\left(1+\dfrac{x-1}{2018}\right)=0\)\(\dfrac{x+2017}{2021}+\dfrac{x+2017}{2020}-\dfrac{x+2017}{2019}-\dfrac{x+2017}{2018}=0\)

\(\left(x+2017\right)\left(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2019}-\dfrac{1}{2018}\right)=0\)

⇔ x + 2017 = 0

⇔ x = -2017

Vậy x = -2017

26 tháng 6 2021

lol

30 tháng 12 2017

khó hiểu vcl

31 tháng 12 2017

đúng lun ko hiểu một chút nào
 

Ta có: \(f\left(2019\right)=2020=2019+1\)          \(f\left(2020\right)=2021=2020+1\)Đặt \(h\left(x\right)=-x-1\)và \(g\left(x\right)=f\left(x\right)+h\left(x\right)\)\(\Rightarrow\hept{\begin{cases}g\left(2019\right)=f\left(2019\right)+h\left(2019\right)=2020-2020=0\\g\left(2020\right)=f\left(2020\right)+h\left(2020\right)=2021-2021=0\end{cases}}\)\(\Rightarrow x=2019;x=2020\)là nghiệm của đa thức g(x) mà g(x) là đa thức bậc 3 , hệ số \(x^3\)là...
Đọc tiếp

Ta có: \(f\left(2019\right)=2020=2019+1\)

          \(f\left(2020\right)=2021=2020+1\)

Đặt \(h\left(x\right)=-x-1\)và \(g\left(x\right)=f\left(x\right)+h\left(x\right)\)

\(\Rightarrow\hept{\begin{cases}g\left(2019\right)=f\left(2019\right)+h\left(2019\right)=2020-2020=0\\g\left(2020\right)=f\left(2020\right)+h\left(2020\right)=2021-2021=0\end{cases}}\)

\(\Rightarrow x=2019;x=2020\)là nghiệm của đa thức g(x) mà g(x) là đa thức bậc 3 , hệ số \(x^3\)là số nguyên

\(\Rightarrow g\left(x\right)=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)\)(\(a\in\)Z*)

\(\Rightarrow f\left(x\right)=g\left(x\right)-h\left(x\right)\)

               \(=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)+x+1\)

\(f\left(2021\right)=a\left(2021-2019\right)\left(2021-2020\right)\left(2021-x_0\right)+2021+1\)

                    \(=a.1.2\left(2021-x_0\right)+2022\)

\(f\left(2018\right)=a\left(2018-2019\right)\left(2018-2020\right)\left(2018-x_0\right)+2018+1\)

                      \(=a.1.2.\left(2018-x_0\right)+2019\)

\(\Rightarrow f\left(2021\right)-f\left(2018\right)=a.1.2\left(2021-2018\right)+3\)

                                                     \(=6a+3\)

Làm nốt

 

3
31 tháng 10 2019

Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:

\(f\left(2019\right)=2020;f\left(2020\right)=2021\)

CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số

31 tháng 10 2019

Cho xin cái đề ạ

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

x=2020 nên x+1=2021

\(P\left(x\right)=x^{2021}-x^{2020}\left(x+1\right)+x^{2019}\left(x+1\right)-....+x\left(x+1\right)-2020\)

\(=x^{2021}-x^{2021}-x^{2020}+x^{2020}-...+x^2+x-2020\)

=x-2020=0

3 tháng 1 2018

\(\frac{x-4}{2021}+\frac{x-3}{2020}=\frac{x-2}{2019}+\frac{x-1}{2018}\)

\(\Leftrightarrow\left(\frac{x-4}{2021}+1\right)+\left(\frac{x-3}{2020}+1\right)=\left(\frac{x-2}{2019}+1\right)+\left(\frac{x-1}{2018}+1\right)\)

\(\Leftrightarrow\frac{x+2017}{2021}+\frac{x+2017}{2020}=\frac{x+2017}{2019}+\frac{x+2017}{2018}\)

\(\Leftrightarrow\frac{x+2017}{2021}+\frac{x+2017}{2020}-\frac{x+2017}{2019}-\frac{x+2017}{2018}=0\)

\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)=0\)

Mà \(\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)\ne0\)

\(\Leftrightarrow x+2017=0\)

\(\Leftrightarrow x=-2017\)

Vậy ..

3 tháng 1 2018

=> (x-4/2021 +1) + (x-3/2020 +1) = (x-2/2019 +1)+ (x-1/2018 +1)

=> x+2017/2021 + x+2017/2020 = x+2017/2019 + x+2017/2018

=> x+2017/2018 + x+2017/2018 - x+2017/2020 - x+2017/2021 = 0

=> (x+2017).(1/2018+1/2019+1/2020+1/2021) = 0

=> x+2017 = 0 ( vì 1/2018+1/2019+1/2020+1/2021 > 0 )

=> x=-2017

Vậy x=-2017

k mk nha

5 tháng 10 2021

\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)

Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương

\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)

Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm

\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)

Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm

5 tháng 10 2021

2b,

Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp

Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt

vô đây đọc nhé