tìm x biết
3\(\sqrt{x}+1=40\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\left(x-2\right)+4\left(x-5\right)=23\)
\(\Rightarrow3x-6+4x-20-23=0\)
\(\Rightarrow7x-49=0\)
\(\Rightarrow x=7\)
3(x-2)+4(x-5)=23
<=>3x-6+4x-20=23
<=>7x-26=23
<=>7x=49
<=>x=7
Vậy x=7
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
\(\dfrac{3}{7}+\dfrac{a}{b}+\dfrac{2}{3}=\dfrac{1}{2}\)
\(\dfrac{3}{7}+\dfrac{a}{b}=\dfrac{1}{2}-\dfrac{2}{3}\)
\(\dfrac{3}{7}+\dfrac{a}{b}=-\dfrac{1}{6}\)
\(\dfrac{a}{b}=-\dfrac{1}{6}-\dfrac{3}{7}\)
\(\dfrac{a}{b}=-\dfrac{25}{42}\)
_____________
\(\dfrac{a}{b}-\dfrac{4}{9}+\dfrac{1}{10}=\dfrac{1}{7}\)
\(\dfrac{a}{b}-\dfrac{4}{9}=\dfrac{1}{7}-\dfrac{1}{10}\)
\(\dfrac{a}{b}-\dfrac{4}{9}=\dfrac{3}{70}\)
\(\dfrac{a}{b}=\dfrac{3}{70}+\dfrac{4}{9}\)
\(\dfrac{a}{b}=\dfrac{307}{630}\)
a, \(\sqrt{\left(2x-1\right)^2}=3\Leftrightarrow\left|2x-1\right|=3\)
Với \(x\ge\frac{1}{2}\)pt có dạng : \(2x-1=3\Leftrightarrow x=2\)( tm )
Với \(x< \frac{1}{2}\)pt có dạng : \(-2x+1=3\Leftrightarrow x=-1\)( tm )
Vậy tập nghiệm của pt là S = { -1 ; 2 }
b, \(\frac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\)ĐK : \(x\ge0\)
\(\Leftrightarrow\frac{2}{3}\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\Leftrightarrow\frac{1}{3}\sqrt{15x}=2\)
\(\Leftrightarrow\sqrt{15x}=6\)bình phương 2 vế : \(\Leftrightarrow15x=36\Leftrightarrow x=\frac{36}{15}=\frac{12}{5}\)( tm )
Vậy tập nghiệm của pt là S = { 12/5 }
ĐKXĐ : x >= 0
pt => 3\(\sqrt{x}\) = 40 - 1 = 39
=> \(\sqrt{x}\) = 39 : 3 = 13
=> x = 169 (t/m ĐKXĐ)
Vậy x=169
Tk mk nha
\(A=\left(\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\left(ĐK:x>0;x\ne1;x\ne4\right)\)
\(=\frac{\sqrt{x}-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{2}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{x-1-x+4}\)
\(=\frac{2\left(\sqrt{x}+1\right)}{3\sqrt{x}}\)
\(3\sqrt{x}+1=40\)
\(ĐKXĐ:x\ge0\)
\(pt\Leftrightarrow3\sqrt{x}=39\)
\(\Leftrightarrow\sqrt{x}=13\)
\(\Leftrightarrow x=169\)
\(\sqrt{x}+1=40\Rightarrow\sqrt{x}=39\Rightarrow\left(\sqrt{x}\right)^2=39^2\Rightarrow x=1521\)
\(3\sqrt{x}+1=40\)
ĐK : x ≥ 0
<=> \(3\sqrt{x}=39\)
<=> \(\sqrt{x}=13\)
<=> \(x=169\)( tm )
Vậy x = 169