K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2020

Đặt \(x=a^3,y=b^3,z=c^3\Rightarrow\)a,b,c dương và abc=1

\(x+y+1=a^3+b^3+1=\left(a+b\right)\left(a^2+b^2-ab\right)+1\ge\left(a+b\right)ab+abc\)

\(\Rightarrow\frac{1}{x+y+1}=\frac{1}{a^3+b^3+1}\le\frac{1}{abc+ab\left(a+b\right)}=\frac{abc}{abc+ab\left(a+b\right)}=\frac{c}{a+b+c}\)

Tương tự \(\Rightarrow\frac{1}{y+z+1}\le\frac{a}{a+b+c};\frac{1}{x+z+1}\le\frac{b}{a+b+c}\)

\(\Rightarrow\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}\le\frac{c}{a+b+c}\frac{a}{a+b+c}\frac{b}{a+b+c}=1\)(đpcm)

25 tháng 2 2017

Áp dụng liên tiếp bđt AM-GM cho 2 số dương ta có:

A = \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\)\(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=\left(xy+\frac{y}{x}\right)+\left(yz+\frac{z}{y}\right)+\)\(\left(xz+\frac{x}{z}\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(\ge2\sqrt{xy.\frac{y}{x}}+2\sqrt{yz.\frac{z}{y}}+2\sqrt{xz.\frac{x}{z}}+\)\(+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(A\ge2y+2z+2x+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(=x+y+z+\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)\)

\(A\ge x+y+z+2\sqrt{x.\frac{1}{x}}+2\sqrt{y.\frac{1}{y}}+\)\(2\sqrt{z.\frac{1}{z}}=x+y+z+2.3=x+y+z+6\)(đpcm)

Dấu "=" xảy ra khi x = y = z = 1

22 tháng 5 2020

ko lam thi thoi chui cl ay!!!

22 tháng 5 2020

đù , chuyện giề đang xảy ra vậy man

26 tháng 7 2019

ấy chết,sửa: \(\sqrt{xyz}\) thành \(\sqrt[3]{xyz}\). Em cứ nhầm cái này

26 tháng 7 2019

Em thử nha, ko chắc đâu;( em thấy nó giống giống lời giải một bài toán nào đó trên tạp chí toán tuổi thơ mà em đã đọc qua lúc trước: chỗ khúc cuối xét \(t_1>t_2\ge3\) ấy ạ. Nên bắt chước lại chỗ đó. tạm thời em chưa nghĩ ra lời nào khác.

Từ đề bài ta có \(1=xyz\le\frac{\left(x+y+z\right)^3}{27}\Rightarrow t=x+y+z\ge3\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{t^2}{t+3}\). Cần chứng minh \(\frac{t^2}{t+3}\ge\frac{3}{2}\left(t\ge3\right)\Leftrightarrow f\left(t\right)=2t^2-3t-9\ge0\) (1)

Xét \(t_1>t_2\ge3\). Khi đó \(f\left(t_1\right)-f\left(t_2\right)=2\left(t_1^2-t_2^2\right)-3\left(t_1-t_2\right)\)

\(=2\left(t_1-t_2\right)\left(t_1+t_2\right)-3\left(t_1-t_2\right)\)

\(=\left(t_1-t_2\right)\left(2t_1+2t_2-3\right)>\left(t_1-t_2\right)\left(2.3+2.3-3\right)=9\left(t_1-t_2\right)>0\) (do \(t_1>t_2\ge3\))

Do đó khi t tăng thì hàm số f(t) tăng, tương tự t giảm thì f(t) giảm với \(t\ge3\). Do đó f(t) đạt giá trị nhỏ nhất khi t = 3.

Khi đó f(t) = 0. Do đó (1) đúng hay ta có đpcm.

31 tháng 5 2019

Đề đúng không bạn?

5 tháng 6 2019

Đúng bạn ạ

Mình giải ra rồi

13 tháng 5 2018

nhân VT ra rồi dùng cô si là ra 

13 tháng 5 2018

ở nhở :v bị ngáo nhập :v

4 tháng 10 2019

Ta có BĐT \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\ge0\left(true\right)\)

Hoàn toàn tương tự: \(y^3+z^3\ge yz\left(y+z\right);z^3+x^3\ge zx\left(z+x\right)\)

Do đó \(VT\le\frac{1}{xy\left(x+y\right)+1}+\frac{1}{yz\left(y+z\right)+1}+\frac{1}{zx\left(z+x+1\right)}\)

\(=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}\) (thay 1 = xyz)

\(=\frac{1}{\left(x+y+z\right)}\left(\frac{x+y+z}{xyz}\right)=\frac{1}{xyz}=1\)(đpcm)

Đẳng thức xảy ra khi x =y = z

P/s :Bài này em làm nhiều trên diễn đàn hoc24 và OLM rồi nhưng cứ nhai lại:D

4 tháng 10 2019

Với x,y>0 luôn có: \(x^3+y^3\ge xy\left(x+y\right)\) (1)

<=> \(\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\ge0\)

<=>\(\left(x+y\right)\left(x^2-2xy+y^2\right)\ge0\)

<=> \(\left(x+y\right)\left(x-y\right)^2\ge0\)( luôn đúng)

Dấu "=" xảy ra <=> x=y>0

Từ (1) <=> \(x^3+y^3+1\ge xy\left(x+y\right)+1=xy\left(x+y\right)+xyz=xy\left(x+y+z\right)=\frac{1}{z}\left(x+y+z\right)\)( do xyz=1)

=> \(\frac{1}{x^3+y^3+1}\le\frac{z}{x+y+z}\)

CM tương tự : \(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\)

\(\frac{1}{z^3+xz+x^3}\le\frac{y}{x+y+z}\)

Cộng vế với vế => \(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le1\)

Dấu "=" xảy ra <=> x=y=z=1