Cho A = {x∈R| \(\frac{2}{\left|x-3\right|}\)≥1} và B = [1;6] . Tìm tất cả giá trị của tham số m để B⊂A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt{x-3}}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}-3}{\sqrt{x}-3}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\frac{3\sqrt{x}+3}{\sqrt{x}+3}.\frac{\sqrt{x}-3}{\sqrt{x+1}}\)
\(R=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)
\(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
\(b)\) Ta có : \(R< -1\)
\(\Leftrightarrow\)\(\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}< -1\)
\(\Leftrightarrow\)\(\frac{\sqrt{x}-3}{\sqrt{x}+3}< \frac{-1}{3}\)
\(\Leftrightarrow\)\(3\sqrt{x}-9< -\sqrt{x}-3\)
\(\Leftrightarrow\)\(4\sqrt{x}< 6\)
\(\Leftrightarrow\)\(\sqrt{x}< \frac{3}{2}\)
\(\Leftrightarrow\)\(x< \frac{9}{4}\)
Chúc bạn học tốt ~
a, \(ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
b, \(R=\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)
\(=\left(\frac{x^2-2x+1}{x^2+x+1}-\frac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{1}{x-1}\right):\frac{x\left(x+1\right)}{x\left(x^2+1\right)}\)
\(=\left(\frac{\left(x^2-2x+1\right)\left(x-1\right)-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\right)\)
\(=\frac{x^3-3x^2+3x-1+3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)
\(=\frac{x^3-1}{x^3-1}.\frac{x^2+1}{x+1}=\frac{x^2+1}{x+1}\)
\(b,\) Để R = 0
\(\Leftrightarrow\frac{x^2+1}{x+1}=0\Leftrightarrow x^2+1=0\) ( vô lý)
Vậy ko có giá trị nào của x để R =0
\(c,\left|R\right|=1\Leftrightarrow\left[{}\begin{matrix}R=-1\\R=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x^2+1}{x+1}=-1\\\frac{x^2+1}{x+1}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+1=-x-1\\x^2+1=x+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=0\\x^2-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
a) Đkxđ : \(\left\{{}\begin{matrix}a\ge0\\a\ne9\end{matrix}\right.\)
A = \(\left(\frac{\sqrt{a}+3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}+\frac{\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\right)\left(1-\frac{3}{\sqrt{a}}\right)\)
= \(\frac{2\sqrt{a}}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}.\frac{\sqrt{a}-3}{\sqrt{a}}\)
= \(\frac{2}{\sqrt{a}+3}\)
b) Để A > \(\frac{1}{2}\)
<=> \(\frac{2}{\sqrt{a}+3}>\frac{1}{2}\Leftrightarrow\frac{2}{\sqrt{a}+3}-\frac{1}{2}>0\)
<=> \(4-\sqrt{a}-3>0\Leftrightarrow1-\sqrt{a}>0\Leftrightarrow a< 1\)
Vậy để A >1/2 thì a <1
ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)
a: \(A=\left(\dfrac{\left(x-1\right)^2}{x^2+x+1}-\dfrac{-2x^2+4x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right)\cdot\dfrac{x\left(x^2+1\right)}{x\left(x+1\right)}\)
\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{\left(x^2+1\right)}{x+1}\)
\(=\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{x+1}=\dfrac{x^2+1}{x+1}\)
Để R=0 thì \(x^2+1=0\)(vô lý)
b: Ta có: |x|=1
=>x=1(loại) hoặc x=-1(loại)
a) A= \(\frac{x\left(1-x^2\right)^2}{1+x^2}\): \(\left\{\left[\frac{\left(1-x\right)\left(1+x+x^2\right)}{1-x}+x\right]\left[\frac{\left(1+x\right)\left(1-x+x^2\right)}{1+x}-x\right]\right\}\)
A= \(\frac{x\left(1-x^2\right)^2}{1+x^2}\): (1+x+x2+x)(1-x+x2-x)
A=\(\frac{x\left(1-x^2\right)^2}{1+x^2}\): (1+2x+x2)(1-2x+x2)
A= \(\frac{x\left(1-x^2\right)^2}{1+x^2}\): (1+x)2(1-x)2
A= \(\frac{x\left(1-x^2\right)^2}{1+x^2}\): (1+x)(1+x)(1-x)(1-x)
A= \(\frac{x\left(1-x^2\right)\left(1-x^2\right)}{1+x^2}.\frac{1}{\left(1-x^2\right)\left(1-x^2\right)}\)
A= \(\frac{x}{1+x^2}\)
b)Thay x= \(-\frac{1}{2}\) vào biểu thức A, có:
A= \(\frac{\frac{-1}{2}}{1+\left(\frac{-1}{2}\right)^2}\)
\(\Leftrightarrow\)A= \(\frac{-2}{5}\)
Vậy A= \(\frac{-2}{5}\) khi x=\(-\frac{1}{2}\)
c) Để 2A=1 thì \(\frac{2x}{1+x^2}\)=1
\(\Leftrightarrow\)\(\frac{2x}{1+x^2}\)-1=0
\(\Leftrightarrow\)2x-1-x2=0
\(\Leftrightarrow\)-(2x+1+x2)=0
\(\Leftrightarrow\)x2-2x+1=0
\(\Leftrightarrow\)(x-1)2=0
\(\Leftrightarrow\)x-1=0
\(\Leftrightarrow\)x=1
Vậy x=1 thì 2A=1
$m$ nằm ở chỗ nào thế bạn?