Cho lục giác đều ABDEF , M bất kì . Khẳng định nào sao đây đúng?
\(A.\overrightarrow{MA}-\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}=\overrightarrow{MD}-\overrightarrow{MF}\)
B. \(\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}+\overrightarrow{MB}=\overrightarrow{MD}+\overrightarrow{MF}\)
C. \(\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}=\overrightarrow{MD}+\overrightarrow{MF}\)
D . \(\overrightarrow{MA}-\overrightarrow{MC}-\overrightarrow{ME}-\overrightarrow{MB}=\overrightarrow{MD}+\overrightarrow{MF}\)
Lời giải:
Gọi $O$ là tâm lục giác đều. Khi đó $AD, BE, CF$ giao nhau tại trung điểm $O$ của mỗi đường.
$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}-(\overrightarrow{MD}+\overrightarrow{MF})$
$=(\overrightarrow{MA}-\overrightarrow{MB})+(\overrightarrow{MC}-\overrightarrow{MD})+(\overrightarrow{ME}-\overrightarrow{MF})$
$=\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}$
$=\overrightarrow{CO}+\overrightarrow{OB}+\overrightarrow{BC}=\overrightarrow{CB}+\overrightarrow{BC}=\overrightarrow{0}$
Do đó:
$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB} =\overrightarrow{MD}+\overrightarrow{MF}$
Đáp án C
Lời giải:
Gọi $O$ là tâm lục giác đều. Khi đó $AD, BE, CF$ giao nhau tại trung điểm $O$ của mỗi đường.
$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}-(\overrightarrow{MD}+\overrightarrow{MF})$
$=(\overrightarrow{MA}-\overrightarrow{MB})+(\overrightarrow{MC}-\overrightarrow{MD})+(\overrightarrow{ME}-\overrightarrow{MF})$
$=\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}$
$=\overrightarrow{CO}+\overrightarrow{OB}+\overrightarrow{BC}=\overrightarrow{CB}+\overrightarrow{BC}=\overrightarrow{0}$
Do đó:
$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB} =\overrightarrow{MD}+\overrightarrow{MF}$
Đáp án C