Chứng minh \(\frac{n+1}{n+2}\left(\frac{1}{C^k_{n+1}}-\frac{1}{C^{k+1}_{n+1}}\right)=\frac{1}{C^k_n}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
26 tháng 9 2020
Phạm Dương Ngọc Nhi thế thì bạn học pp này đi. Cái pp này giúp cm nhiều bài một cách dễ dàng
15 tháng 3 2020
Không mất tính tổng quát giả sử \(a\ge b\ge c\). Khi đó, ta dễ dàng có được \(a^n\ge b^n\ge c^n\)và \(\frac{1}{b+c}\ge\frac{1}{c+a}\ge\frac{1}{a+b}\)
Áp dụng bất đẳng thức Chebyshev, ta có: \(\frac{a^n}{b+c}+\frac{b^n}{c+a}+\frac{c^n}{a+b}\ge\frac{1}{3}\left(a^n+b^n+c^n\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
P/s: Đây là một bước nhỏ trong một cách chứng minh dạng tổng quát của bđt Nesbit
18 tháng 2 2020
Nhỏ hơn \(\frac{9}{20}\)nhé xin lỗi .Bạn giải giúp mình với
\(VT=\frac{n+1}{n+2}\left(\frac{1}{C^k_{n+1}}+\frac{1}{C^{k+1}_{n+1}}\right)=\frac{n+1}{n+2}.\frac{k!\left(n+1-k\right)!+\left(k+1\right)!\left(n-k\right)!}{\left(n+1\right)!}\)
\(=\frac{1}{n+2}.\frac{k!\left(n-k\right)!}{n!}\left[\left(n+1-k\right)+\left(k+1\right)\right]=\frac{k!\left(n-k\right)!}{n!}=\frac{1}{C^k_n}=VP\left(đpcm\right)\)