K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2020

Phương trình (2) là phương trình đường thẳng \(\Delta:\left(2m+1\right)x+my+m-1=0\)

Phương trình (1) có dạng phương trình đường tròn: \(\left(C\right):x^2+y^2=9\)có tâm là \(O\left(0,0\right)\)và bán kính R=3

Hệ có hai nghiệm \(\left(x_1;y_1\right),\left(x_2;y_2\right)\)\(\Leftrightarrow\)đường thẳng \(\Delta\)cắt \(\left(C\right)\)tại 2 điểm \(M\left(x_1;y_1\right),N\left(x_2;y_2\right)\). Khi đó \(MN=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)\(\Leftrightarrow A=MN^2=\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2\)

Biểu thức A đạt GTLN khi \(\Delta\)đi qua tâm O của đường tròn, tức là: \(\Delta:\left(2m+1\right).0+m.0+m-1=0\Leftrightarrow m=1\)

14 tháng 11 2018

a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)

\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)

Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.

14 tháng 11 2018

b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)

\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)

\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)

8 tháng 7 2016

\(hpt\Leftrightarrow\hept{\begin{cases}m\left(m+1\right)x+2my=4m-2m^2\\\left(2-m\right)x+my=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m^2+2m-2\right)x=-2m^2+4m-1\\\left(2-m\right)x+my=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{-2m^2+4m-1}{m^2+2m-2}\\y=\frac{1-\left(2-m\right)x}{m}\end{cases}}\)

21 tháng 3 2018

mình ko biết nhé

23 tháng 3 2018

(m+1)x+my=2m−1

mx−y=m2−2

 thế nhé

Xét hệ: \(\hept{\begin{cases}mx+y=5\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}3mx+3y=15\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}mx+y=5\\mx=9\left(\cdot\right)\end{cases}}\)

Hệ pt đã cho có nghiệm duy nhất <=> \(\left(\cdot\right)\)có nghiệm duy nhất m \(\ne\)0

Khi đó hệ đã cho có nghiệm duy nhất \(\hept{\begin{cases}x=\frac{9}{m}\\y=-4\end{cases}}\)

Ta có: (2m - 1)x + (m + 1)y = m

Hay (2m - 1).\(\frac{9}{m}\) + -4(m + 1) = m

<=> \(\frac{18m-9}{m}-4m-4-m=0\)

<=> \(\frac{18m-9-4m^2-4m-m^2}{m}=0\)

=> -5m2 + 14m - 9 = 0

<=> 5m2 - 14m + 9 = 0

<=>5m2 - 5m - 9m + 9 = 0

<=> 5m(m - 1) - 9(m - 1) = 0

<=> (5m - 9)(m - 1) = 0 <=> \(\orbr{\begin{cases}m=\frac{9}{5}\\m=1\end{cases}\left(TM\right)}\)

Vậy với m = 9/5 hoặc m = 1 thì thỏa mãn đề bài