chứng minh rằng 55n+1- 55n chia hết cho n n ϵ N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : 55n + 1 – 55n
= 55n.55 – 55n
= 55n(55 – 1)
= 55n.54
Vì 54 chia hết cho 54 nên 55n.54 luôn chia hết cho 54 với mọi số tự nhiên n.
Vậy 55n + 1 – 55n chia hết cho 54.
`55^(n+1)-55^n = 55^n . 55 - 55^n`
`= 55^n . (55-1) = 55^n . 54 vdots 54 forall n`
Lời giải:
* CM $A$ chia hết cho $2$
Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.
Do đó luôn tồn tại 1 trong 2 số là chẵn
$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$
* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:
Nếu $n=3k(k\in\mathbb{Z}$
$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Vậy tóm lại $A\vdots 3(**)$
Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)
Lời giải:
* CM $A$ chia hết cho $2$
Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.
Do đó luôn tồn tại 1 trong 2 số là chẵn
$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$
* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:
Nếu $n=3k(k\in\mathbb{Z}$
$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Vậy tóm lại $A\vdots 3(**)$
Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)
n có 3 dạng tổng quát là: 3k ; 3k + 1 ; 3k + 2 (k ∈ N)
Trường hợp 1: n = 3k
Thay n = 3k vào n + 2019, ta có:
n + 2019 = 3k + 2019 = 3(k + 673)⋮3
=> (n + 2019)⋮3
=> (n + 2017)(n + 2018)(n + 2019)⋮3 (1)
Trường hợp 2: n = 3k + 1
Thay n = 3k + 1 vào n + 2018, ta có:
n + 2018 = 3k + 1 + 2018 = 3k + 2019 = 3(k + 673)⋮3
=> (n + 2018)⋮3
=> (n + 2017)(n + 2018)(n + 2019)⋮3 (2)
Trường hợp 3: n = 3k + 2
Thay n = 3k + 2 vào n + 2017, ta có:
n + 2017 = 3k + 2 + 2017 = 3k + 2019 = 3(k + 673)⋮3
=> (n + 2017)⋮3
=> (n + 2017)(n + 2018)(n + 2019)⋮3 (3)
Từ (1) ; (2) và (3) =>(n + 2017)(n + 2018)(n + 2019)⋮3 với mọi n ∈ N
Vậy (n + 2017)(n + 2018)(n + 2019)⋮3 (đpcm)
\(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3\)
\(=n^3+n^3+3n^2+3n+1+n^3+6n^2+12n+8\)
\(=3n^3+9n^2+15n+9\)
\(=3n^2\left(n+1\right)+6n\left(n+1\right)+9\left(n+1\right)\)
\(=3\left(n+1\right)\left(n^2+2n+3\right)\)
\(=3\left(n+1\right)\left[n\left(n+2\right)+3\right]\)
\(=3n\left(n+1\right)\left(n+2\right)+9\left(n+1\right)\)
Do \(n,n+1,n+2\) là 3 số tự nhiên liên tiếp
\(\Rightarrow3n\left(n+1\right)\left(n+2\right)⋮9\)
\(\Rightarrow A=3n\left(n+1\right)\left(n+2\right)+9\left(n+1\right)⋮9\left(đpcm\right)\)
P/s : Bài này bạn có thể sử dụng phương pháp quy nạp
làm như vậy sẽ nhanh hơn
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)
\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)
\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)
Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)